欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAHM02流量计定做

发布时间: 热度:
德国VSEAHM02流量计定做同时我们还经营:计量管路流量量程变化是实际使用中经常遇到的情况, 特别是直接对没有储气设备用户供气的计量更是如此。我国天然气、煤气的大部分消耗是供...

德国VSEAHM02流量计定做同时我们还经营:计量管路流量量程变化是实际使用中经常遇到的情况, 特别是直接对没有储气设备用户供气的计量更是如此。我国天然气、煤气的大部分消耗是供给城市作民用燃气的,一般日负荷的变化都比较大,流量的量程变化也就较大。常用孔板流量计的量程比一般为3:1,对于大量程比的场合,一般采用以下三种方法解决。(1)将大流量分段多路并联组合进行测量.在流量量程变化较大的场合,往往采用不同管径的计算管道并联组合,通过计量管路的组合切换来适应流量的变化;这是目前较为常用的方法。(2)更换孔板片改变值进行测量.在不改变标准孔板节流装置和差压计的情况下,通过更换不同开孔直径的孔板,改变孔径比的方法来实现流量测量。适用于较长时间的季节性流量较大幅度改变或供气量的突然变化致使差压计超出规定使用范围的情况。(3)用一台孔板流量计并联不同量程差压计进行测量.采用同一台孔板流量计的一次装置,并联两台或两台以上不同量程的差压计进行切换测量。电缆接头中的保护塞只能在准备安装电缆时拆除.  DN3至DN8[1/10"至5/16"]的法兰型电磁流量计传感器,应采用DN10[3/8"]的配对法兰.这样DN3,4,6或者8[1/10",5/32",1/4"或者5/16"]的管道就会与仪表成为一体.  此外,DN3至DN8[1/10"至5/16"]法兰型传感器, 还可使用DN15[1/2"]的配对法兰.  石墨不可用于法兰或者工艺连接件垫圈,因为在一定条件下,仪表管道内部可能形成导电涂层.管路中应避免出现真空冲击,以防止可能对衬里(PTFE)以及仪表造成的损坏.配对法兰的垫圈表面  安装中,平行配对法兰的垫圈材料必须适于介质和操作条件.只有这样才可以避免泄漏.为了确保最佳的测量结果,须保证传感器垫圈应法兰同心.保护板  保护板用于防止衬里的损坏.只有在传感器将安装在管路中时才可以拆除保护板.必须谨慎小心,确保衬里未在安装过程中脱落或者损坏, 造成泄漏.法兰螺栓紧固扭矩  安装螺栓应按照通常的方式平均紧固,不可在电磁流量计某一侧过度紧固.我们建议螺栓在紧固之前添加润滑油,并交叉紧固,如上图一所示. 在第一轮紧固过程中,螺栓拧紧50%,在第二轮中提高至80%,最后使用最大扭矩紧固.不应超过最大扭矩见表一,表二流量计选型时应考虑很多因素,如仪表性能流体特性、安装要求环境条件以及价格因素等。其中对计量对象即燃气的确切了解非常重要,这往往需要选型设计人员和计量管理人员进行深入细致的调查。(1)流量计性能方面:精确度.重复性.线性度、范围度、压力损失、上下限流量、信号传输特性.响应时间等;(2)流体特性方面:流体压力、温度、密度、粘度、润滑性.化学性质磨蚀、腐蚀、结垢、脏污、气体压缩系数、等熵指数比热容声速、混相流、脉动流等;(3)安装条件方面:管道布置方向、流动方向、流量计上下游直管段长度、管径、维护空间、管道振动、接地、电源辅助设备(过滤、排污)等;(4)环境条件方面:环境温度、湿度、安全性、电磁干扰、防爆等;(5)经济因素方面:购置费、安装费、维修费、校验费.运行费(能耗)、使用期限、备品备件等。为促使电磁流量计实际使用寿命增加,把故障实际发生率把控至最低范围,务必强化对电池流量计日常维护管理。一是,变送装置管内壁部位,需定期清理好结垢层,对绝缘衬里优良绝缘性起到良好保障作用;二是,生产运行期间,定期检查仪表,属于保证后续湿气与水下运动关键,特别是检查接线口好仪表端盖处密封性,以去吧仪表内部不会进入水与湿气;为确保仪表有极高的密封性,应时刻在壳体盖螺纹位置涂好润滑黄油,且需防止因碰撞而受损;三是,流量计实际运行期间,仪表零点务必要定期标定好,确保电磁流量计可实现有效接地;四是,电磁流量计实际使用部门应当为每个技术人员建立起短期与长期的培训计划,设定出具体的培训内容与要求,要根据相关技术人员的实际技能情况,制定有针对性的培训计划。从而促进仪表技术人员对电磁流量计实际期间故障问题的实时检查分析及排除能力,强化对电磁流量计日常的维修处理,以确保更好地使用电磁流量计。一体化孔板流量计是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量,孔板流量计节流装置包括环室孔板、喷嘴等.该流量计是一个新的概念,是由专业制造厂整体组装的(包括检测元件、变送器及附件、工艺短管等),并可按用户要求的系统精度标定合格的孔板流量计系统.由于该流量计现场的维护量较小,经常被忽略,而孔板流量计所配套的差压变送器,如果不经常调校,日积月累再加上会由于一些客观的因素而导致测量结果误差较大.下面就给大家主要介绍下调校一体化孔板流量计测量精度的主要措施:1、温度对流量计的影响及其修正,流体温度变化引起密度的变化,从而导致差压和流量之间的关系变化,其次,温度变化引起管道内径,孔板开孔的变化,对温度变化的修正,就是采取温度仪表测量现场温度进而输入到二次仪表中来修正温度变化而导致的误差。2、蒸汽质量流量的计算,一体化孔板流量计测量蒸汽时,先由差压信号求得流量值,再由蒸汽温度,压力值查表得出密度,来计算蒸汽流量质量。3、孔板流量计进行逐台标定。大家都知道,标准孔板只要设计制造参照相关标准,不需要实流标定就可以直接使用。因为流出系数可以直接由软件算出,但是计算机计算毕竟的比较理想的,和现场环境还是有一定差别的,所以,为了保证测量精度,建议对每台流量计进行实流标定,把标定出的流出系数和计算结果进行比对,算出差值,进行修正。4、可膨胀性校正。孔板流量计测量蒸汽,气体流量时,必须进行流体的可膨胀性校正,具体校正系数可以参照节流装置设计手册。  5、雷诺数修正,一体化孔板流量计的流量系数和雷诺数之间有确定的关系,当质量流量变化时,雷诺数成正比变化,因而引起流量系数的变化。1、电磁流量计传感器外壳未接地出现的误差。一般情况下,传感器都是在金属管道上进行安装,并且金属管道都是在地下,很多人因此认为对于仪表的外壳就不需要再做接地处理了。但是,这么操作却是忽略了两个重要问题:一方面是金属管道都做了防腐蚀处理,金属管道与地不能大面积接触;二是传感器一般都由胶皮垫连接着法兰而与金属管道分隔开,所以造成了传感器的接地电阻大大增加,影响了流量计的测量结果,进而形成了误差。另外,由于电动势检测一般均为几毫伏左右,这也容易造成杂散电流对检测结果的影响。 2、干扰环境下的输出信号误差分析。对于一般的电磁流量计来说,传感器即电极与转换器之间的连接电缆应做到尽可能短。因为传送信号的电缆过长,电缆本身的分布电容造成的负载效应就会引起较大的测量误差,同时也对信号受到干扰的几率大大增加。在测量时,还要注意到走线方面,务必做到信号线与电源线分开走线,这样就能防止产生“寄生电容”的干扰。目前很多场合已经用上了数字输出仪表,以求获得最为准确的测量数据。 3、强电、强磁环境下的误差分析。流量计工作环境方面,要注意尽可能地与强电、强磁等设备的距离远一些。由于电磁流量计在接地后,其周边的附近如果也有一些其他的强电、强磁等设备也在接地,会造成流量计产生接地压降,使电磁流量计接地电位变化,进而对测量结果形成误差。另外,流量计如果是在非常强的磁场下工作,比如变压器等强电磁设备附近使用,周边磁场环境的强度超过电磁流量计电磁兼容的幅度时,会对测量结果的准确性造成很大的影响。1.只要满足流量计的使用条件(包括.流体的流动特性.介质特性.操作过程及流量范围)与检定时相一致,便会得到与流量计检定精度等量的使用精度。这就要求流量计的使用与检定的流体的流动特性(流量计进口的速度分布)相同;流体的物理性质(密度等)也相同;检定过程相同,并且在流量计的检定流量范围内使用仪表常数,那么在对介质密度压力修正后。其使用精度便等同于其检定精度。2.若流量计的使用与检定条件满足上述相同性原则,并且流量计在检定流量范围内定点使用时(使用其检定流量下的仪表系数的平均值).则流量计的使用精度将会大大优于其检定精度。3.若流量计在检定该范围内实际使用时,可用特性方程。即依据检定中得到的各个流量下的平均仪表系数与流量Q的对应关系,借助最小二乘法原理,直线拟合得到K1=aq+b,用拟合后的K1代替仪表常数k,也可提高流量计的使用精度。电磁流量计传感器的接地  为了使电磁流量计可靠的工作,提高测量精度,不受外界寄生电势的干扰,传感器应有良好的单独接地线,接地电阻<10Ω.在连接传感器的管道内若涂有绝缘层或是非金属管道时,传感器两侧还应加装接地环.a、在金属管道上的接地方式:金属管道内避没有绝缘层,按下图接地.b、 在塑料管道上或有绝缘层、油漆管道上的接地方式:电磁流量计传感器上的两端面应加装接地环,使管内流动的被测介质与大地短接,具有零电位.否则,电磁流量计无法正常工作.在实际应用时,对于孔板流量计如果使用不当,会造成很大的测量误差,有时可达到20%左右。在流量计的使用中,如何减少其测量误差,必须考虑流量的测量原理和结构形式,注意使用条件和测量对象的物理性质是否与所选用的流量计性能相适应。下面就其测量误差进行分析:1.流量计算方程描述流体是充满圆管的、充分发展的定常流。若流动状态真实性无法确定,如果仍按照原有的仪表常数推算流量,将与实际流量存在误差。2.天然气以甲烷为主加上乙烷和其他少量的轻烃,真实相对密度小于或等于0.75。由于被测介质实际特性的不确定因素,以及实际物性变化影响仪表正常工作等对流量测量的不确定度产生影响。3.孔板的结构设计、加工、装配、安装、检验和使用必须符合标准规定的全部技术要求。由于各个装置自身及环境条件因素引起的不确定因素。3.1.孔板安装不正确  管道水平安装,如果孔板开孔中心与管道中心线不同心;如果在安装过程中存在引压管堵塞及垫片等凸出物,则会造成孔板前后压差测量不准确,从而造成测量误差。3.2.孔板入口边缘被磨损  在使用中,由于流体的磨蚀作用,使孔板的入口边缘变钝,被磨成圆形入口边缘。结果是在相同的流量下,孔口收缩系数变大,造成差压发生变化,造成测量误差。3.3.孔板表面的结垢  长期使用时,孔板流量计表面结垢,使孔板的流通面积变小,从而造成差压增大,使流量计测量值大于实际值,影响计量精度。4.差压变送器零点漂移和量程设置不当  由于时间较长,变送器的零点会发生漂移,这时差压变送器的输人和输出信号发生变化。若不及时调整,会造成实测流量值偏低或偏高。德国VSEAHM02流量计定做流量计检定时对检定用流体的要求1.检定用流体应为单相气体或液体,充满试验管道,其流动应无漩涡。2.检定用流体应是清洁的,无可见颗粒、纤维等物质当检定用流体为液体时的要求:(1)其介质在管道内和流量计内任一点上的压力应高于其饱和蒸气压。对于容易气化的介质,在流量计下游应有一定的背压。推荐背压为最高检定温度下检定用液体饱和蒸气压力的1.25倍(2)液体中不能夹杂气体,在每次检定过程中,液体温度变化应不超过±0.5℃。(3)液体的黏度应尽量与流量计实际测量液体的黏度相一致。如有差异,对流量计的影响一般应不超过流量计最大允许误差的1/3(4)当检定液体的黏度不能满足被检流量计的要求时,可按其黏度修正公式进行黏度修正(5)由于电磁流量计只能测量导电液体。其检定用液体的电导率应在5mS/m(50uS/cm)至500mS/m(5000uS/cm))的范围内,或根据流量计制造厂给出的技术指标确定。当检定用流体为气体时的要求:(1)其介质与实际使用介质的密度、黏度等物理参数相接近(2)气体中应无游离水或油等杂质存在,粉尘等固体物的粒径应小于5um。(3)每一次检定过程中,介质的温度变化应不超过±0.5℃~±1℃。其压力波动应不超过±0.5%。当检定用气体为天然气时的要求:(1)天然气气质应符合GB17820-2012Z类气的要求。天然气的相对密度为0.55~0.80。(2)在检定过程中,气体的组分应相对稳定.天然气取样按GB/T13609-2012执行,天然气组分分析按GB/T13610-2003执行。出现孔板流量计反向安装这种情况的原因有二:1.操作人员未进行岗前培训,技术不熟练,不熟悉工艺流程走向;2.由于操作人员在更换孔板,清洗检查节流装置,进行工艺改造安装时,或在进行训练的过程中,粗心大意,现场监督,检验不到位等.出现此情况时,孔板下游锐角边经缘朝向上游,其结果将直接影响计量偏低,反映在现场是差压下降一个台阶,而由于现场原因未能及时发现并纠正.其引起流量偏低的影响率,据国外实验研究资料数据为-12%~-17%,一般情况下,雷诺数不变时,高β值与低β值之间的流量偏差值为±2%,管径雷诺数越低,其流量偏差越大。  此外,在更换孔板以后,其配套产量计算参数必须同步更换,否则会出现相当大的正负偏差,若由小孔径换大孔径,参数未更换,则流量计量将偏高;反之,流量计量将偏低,在日输气量大的用户计量中,造成的损失将是很大,甚至是难以弥补的。  从以上分析,我们不难看出,孔板流量计反向安装,参数的错误是可以通过操作人员认真仔细的操作,培训来杜绝的,在天然气商品贸易结算中,是绝对不允许有此现象发生的,所以制定一套科学的严格的现场计量监督制度是很有必要且很重要的。容积式流量计主要用来测量不含固体杂质的高粘度液体,例如油类、冷凝液、树脂和液态食品等粘稠流体的流璧,而且测量准确,精度可达士0.2%,而其他流量计很难测量高粘度介质的流量。椭圆齿轮流量计是最常用的一种容积式流量计.如图3-13所示。1.工作原理  椭圆齿轮流量计的测量部分是由两个互相啮合的椭圆形齿轮A和B以及轴、壳体等组成。椭圆齿轮与壳体之间形成测量室。如图3-14所示。  当被测流体流经椭圆齿轮流量计时,由于要克服仪表阻力必然引起压力损失,从而在其人口和出口之间产生压力差 . 在此压力差的作用下,产生作用力矩使椭圆齿轮连续转动 .  由于 P1>P2,P1、P2共同作用产生的合力矩使A轮顺时针转动. 而B轮上的合力矩为零,此时A轮带动 B 轮顺时针转动.A为主动轮.B为从动轮. 在图3-14(b) 所示中间位置时,A轮和B轮都为主动轮.在图3-14(c)所示位置时,A轮上的合力矩为零,而B轮上的合力矩最大.B 轮逆时针转动,此时B为主动轮 .A 为从动轮。如此循环往复,将被测介质以椭圆齿轮与壳体之间的月牙形容积为单位,依次由进口排至出口。椭圆齿轮流量计旋转一周排出的被测介质体积量是月牙形容积的 4 倍。椭圆齿轮流量计的体积流量Q为:Q=4nv2(3-7)式中:n为椭圆齿轮的旋转速度;V2为椭圆齿轮与壳体间形成的月牙形测量室的容积。2.使用特点  椭圆齿轮流量计适用于洁净的高粘液体的流量测量,其测量精度高,压力损失小,安装使用方便,可以不需要直管段。但被测介质中不能含有固体颗粒,更不能夹杂机械物,否则会引起齿轮磨损甚至损坏。所以为了保护流量计,必须加装过滤器。  椭圆齿轮流盘计在启用或停运时,应缓慢开、关阀门,否则易损坏齿轮,另外,流量计的温度变化不能太剧烈,否则会使齿轮卡死。插入式热式气体质量流量计的信号发生模块包括两个传感器探头、温度补偿电桥和电压调整电路三部分/如图所示,本课题所设计的是插入式恒温差质量流量计,采用热消散效应,所以我们选择铂热敏电阻Pt20和Pt1000分别作为流量计的流量探头和温度探头,铂热敏电阻的阻值对温度反应灵敏.与所处环境温度基本呈线性关系,确保了我们对流量计精度的要求;同时,铂热敏电阻的温度系数大,在测量范围内,物理化学性能稳定,可以反复加热冷却,使用寿命长,完全可以用来做传感器材料,保证流量计的稳定性要求;而且热敏电阻的体积可以做到很小,减小插入式热式气体质量流量计对流体流动状态的影响,保证流量测量值的真实有效。德国VSEAHM02流量计定做为了适应仪表网络化的发展方向,在系统设计时我们要根据实际需要为电磁流量计配备合适的通信接口.在当今单片机系统的通信中,RS232和RS485标准总线应用最为广泛,技术也最为成熟.RS232用来连接两台计算机(微处理器)之间的串口通信,当我们需要一个更长的距离或者比RS232更快的速度下进行传输的时候,RS485就是一个很好的解决办法.另外,RS485连接不限于仅仅连接两台设备.根据距离,比特率和接口芯片,我们可以用单一导线连接最多256个节点.为了使电磁流量计的应用范围更加广泛,我们选用RS485标准总线来实现仪表和外部系统的通信.  RS485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线.该规范满足所有RS422的要求,而且比RS422稳定性更强.具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V).  接收器输入灵敏度为士200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV.最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、+5V(最大值).  驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器.对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高.RS485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375).  采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻.RS485已经成为POS、工业以及电信应用中的最佳选择.较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输.更高的接收器输入阻抗还允许总线上挂接更多器件.  因RS485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口.因为RS485接口组成的半双工网络一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输.RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB.9(孔),与键盘连接的键盘接口RS485采用DB.9(针).  通信接口电路如图3.13所示,我们选用MAX485作为系统的通信接口芯片.MAX485是MAXIM公司推出的支持RS485协议的低功耗收发器,它的驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率.它是用于RS.485通信的半双工低功率收发器件,包含一个驱动器和一个接收器,具有输入接收器和输出驱动器使能管脚.使用一个半双工连接的难点就是控制每个驱动器在什么时候被启用,或者处于激活状态.当一个驱动器在传输的时候,必须直到它完成传输都保持被启用状态,然后在一个应答节点开始响应之前切换到禁用状态.MAX485的控制端RE和DE短接,这样用一个信号可以控制两种状态:接收和发送.RE和DE为“l”时,发送端接通,数据经DI脚后,变成传送的信号送到传输线.RE和DE为“0”时传输线上的信号经MAX485,当处于发送状态时,数据信号经发送端DI,在输出端A和B上交替出现高电平:当处于接收状态时,A和B上交替的高电平信号经MAX485转换成高低电平信号经RO输出.在电磁流量计传输过程中,交替的高电平保证通信传输回路中始终有电流,能实现可靠通信.

您如果需要德国VSEAHM02流量计定做的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网