欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAHM01流量计选型样本

发布时间: 热度:
德国VSEAHM01流量计选型样本同时我们还经营:当前,在国内关于蒸汽测量方面存在不少误区,很多用户往往认为购买了高品质的流量计就可以得到准确的计量结果。蒸汽的计量不同于其它...

德国VSEAHM01流量计选型样本同时我们还经营:  当前,在国内关于蒸汽测量方面存在不少误区,很多用户往往认为购买了高品质的流量计就可以得到准确的计量结果。蒸汽的计量不同于其它流体如水、空气等介质,在实际测量中影响其精确测量的因素较多,经常会出现流量计本身检定合格,而实际却感觉计量“不准”的现象。影响孔板流量计对蒸汽流量准确计量的因素主要有以下三个方面。1.上下游直管段不足  对于传统的涡街或孔板流量计,其前后安装直管段要求分别约为20D和5D。如果上下游直管段不足,则会导致流体未充分发展,存在旋涡和流速分布剖面畸变。流速剖面畸变通常由管道局部阻碍(如阀门)或弯管所造成,而旋涡普遍是由两个或两个以上空间(立体)弯管所引起的。上下游直管段不足可以通过安装流动调整器来调整,最简单有效的办法是采用对上下游直管段要求较低的流量计。2.蒸汽的密度补偿不正确  为了正确计量蒸汽的质量流量,必须考虑蒸汽压力和温度的变化,即蒸汽密度补偿。不同类型的流量计受密度变化影响的方式不同。涡街流量计的信号输出只和流速有关,而和介质的密度、压力和温度无关,差压式流量计其质量流量与流量计的几何外型、差压平方根和密度平方根有关。①补偿精确度的差异。测温对补偿精确度影响较大。;如采用相同精度等级的温度和压力感应器,测温误差引起的密度差异要大于测压误差。②压力测量影响因素。在蒸汽压力的测量中,由于引压管内冷凝水的重力作用会使压力变送器测量到的压力同蒸汽压力之间出现一定的差值。测压误差如果不予以校正,则会影响蒸汽密度的计算,引起流量计量的误差。对于上述现象,可在二次表(流量计算机内)进行零点迁移,既简单又准确。3.蒸汽干度的影响  目前,用于测量蒸汽流量的孔板流量计大部分为体积流量计,首先测得体积流量,然后通过蒸汽的密度计算质量流量,也就是假定蒸汽为完全干燥。但是,蒸汽并非完全干燥,如果不考虑蒸汽干度的影响,得出的数据会低于实际的流量。因此流量计的二次仪表(流量计算机)应该具有设置饱和蒸汽干度的功能。但在实际工况确定蒸汽的干度也很困难。如果能够改进蒸汽流量计入口处的蒸汽品质,则能改进孔板流量计的测量精度。1.机械干扰  在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确性。2.紫外线的伤害  由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3.感应探头易损坏  旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。智能电磁流量计的测量不受流体的密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。电磁流量计设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便。   智能电磁流量计在试运行过程中会产生的问题,一般是由于安装的问题或选型的问题引起的,而在正常运行期间发生的问题一般是由于工作条件变化或出现新干扰源等问题引起的。所以在正常运行期间的问题一般都可以归结为仪表抗干扰能力的问题。下面小编就简单分析一下智能电磁流量计输出晃动的原因及解决办法:一、智能电磁流量计输出晃动大体上可归纳为这几点:1、流动本身是波动或脉动的,实质上不是电磁流量计的故障,仅如实反映流动状况;2、管道末充满液体或液体中含有气泡;3、外界杂散电流等电、磁干扰;4、液体物性方面(如液体电导率不均匀或含有较多变颗粒/纤维的浆液等)的原因;5、电极材料与液体匹配不妥。二、电磁流量计检查程序:    智能电磁流量计输出晃动的流程:先按流程图考急作初步调查和判断,然后再逐项细致检查和试排除故障。流程所列检查顺序的先后原则是:1、可经观察或询问了解无须作较大操作的在前,即先易后难;2、按过去现场检修经验,出现频度较高而今后可以出现概率较高者在前;3、检查本身的先后要求。若经初步调查确认足后几项故障原因,亦可提前作细致检查。   检查智能电磁流量计管内液体是否冲满,如没有充满,那么传感器处于水平安装位置或垂直安装流动的位置应特别注意,改换到能完全冲满的位置,如垂直安装流动的位置。根据高含水原油这一特殊介质及其使用环境的特点,对早期广泛应用于注水、注聚等计量中的电磁流量计进行了相关的技术改进。(1)对传感器进行防爆处理。通过现场应用进行综合分析,认为高含水原油的计量场所是油气密集的地方,需要对传感器进行防爆处理才能满足工作需要。根据传感器的特点及其使用环境的要求,选用了传感器的复合防爆型式,即浇封隔爆型,防爆标志为mdIIBT4.关键技术是传感器主体结构采用了浇封工艺技术、接线盒采用了隔爆外壳。接线盒的隔爆接合面为螺纹隔爆接合面,引人装置采用密封圈压紧螺母式,产品通过了国家防爆电气产品质量监督检验测试中心的5项试验。(2)提高转换器的输人阻抗,保证流量计的测量精度。对电磁流量计来说,传感器产生的感应电势只有几毫伏,如要进行准确测量,要求转换器的输人阻抗远远大于传感器的内阻,才能保证仪表的精度。电磁流量传感器的内阻仅与被测介质的电导率和电极直径有关。高含水油的电导率随含水情况有所变化,因此,采用了专用前置放大器,相应地提高了转换器的输人阻抗,保证了测量精度。(3)转换器实现智能化。智能电磁流量计采用了自动跟踪式励磁控制和智能反馈式信号放大处理技术,使用了多CPU协同信息处理的方法,使仪表在功能上具有了支持各种传感器匹配与校验、数字与模拟的系统连接、自诊断和安装调试测试、断电信息保护、在线信息查询、软件冲击自动恢复、多单位多形式的计量显示选择等全方位的智能化功能,操作使用十分方便。(4)改进型电磁流量计的主要技术指标。①适应的场所:转油站、联合站的高含水油计量,因为这些场所的高含水油经过油气分离,流态比较稳.定,含水波动较小,计量精度能够保证;②被测介质的含水率:>80%;③工作压力:≤2.5MPa;.④被测介质温度:≤100℃;⑤传感器衬里:可根据被测介质的温度选择不同的衬里。高含水油的温度一般在50~70℃,选择耐油橡胶衬里可满足计量要求;⑥口径依据被测液量的满量程流量来选择。电磁流量计的流速下限为0.5m/s。一般流量测量以2m/s为经济流速,而在高含水油测量时,流体的流速要求偏高一些,一般3~4m/s,这样可以避免低流速时原油附着于测量管壁及电极上,保证正常计量。.对于超声波流量计,流量修正系数K定义为沿超声流量计信号传播声道上的线平均流速Lv与管道截面平均流速Vs的比值。由式(2-13)和式(2-14)可以得到层流状态下的流量修正系数 K 为由式(2-17)和式(2-18)可以得到湍流状态下的流量修正系数K为根据表1可以得到不同雷诺数下湍流流态的流量修正系数K,而在实际工程应用中,当管道内流体雷诺数Re<105时,湍流状态流量修正系数K为 当管道内流体雷诺数Re>105时,湍流状态流量修正系数K为  上述对于流量修正系数的分析是基于超声波流量计处于理想的安装条件下,即安装处管道内流体充分发展。实际流量修正系数不仅与雷诺数有关,还与管道的安装状况、流量计上下游管段长度等因素有关。通常情况下管道内实际流态分布与理想流态分布有偏差,对流量计的测量精度产生影响,因此在管道布置和流量计安装时,一般要求上游直管段大于10倍管道内径,下游直管段要大于5倍管道内径。金属管浮子流量计常见故障及处理方法1.指针抖动  轻微抖动,-般都是由于流体流动自然引起的,不影响正常使用,可以在仪表的设置中适当的加大阻尼参数。剧烈抖动,一般是介质波动,脉动引起,还有一种原因是安装不正确,安装工况不符合流量计的要求,超过流量计的可测量量程。2.指针不动  一般是浮子卡死,不能随着流体流动而上下移动。我厂的多台金属管浮子流量计均出现过这种现象,通过拆检,发现是浮子卡死引起的。进一步分析原因为,浮子的导向轴由于长年磨碎形成凹槽,导向轴转动,与D形固定环卡住,导致浮子不能移动。我们的处理方法是将D形孔扩成圆形孔使得浮子能上下移动,使得仪表在不更换的情况下回复运行。还有-种原因是浮子.上的磁钢吸附介质中的铁磁性物质,8积月累,形成水垢状结合体,导致浮子移动不灵活甚至不能移动。这种情况是加装过滤装置,及时清理,定期维护方能正常使用。3.流量计没有显示  可能是电源接触不良或接线脱落,查看电源供应是否正常,接线是不是紧固,正负极是不是接反等。还有就是流量计内部电路损坏,显示组件损坏,处理方法是更换电路板显示部件等。4.实际流量与指示流量不一致  一般是浮子受介质腐蚀造成浮子的质量体积等发生变化,造成仪表系数与出厂标定的数值不一样,所以显示的流量与实际相测得的的流量存在误差。还有就是锥管内直径尺寸变化,与浮子变化一样,都是改变了仪表的系数,与出厂标定的数值不一样等。解决办法是更换成耐腐材料,或者重新标定,或者换新的浮子。如果还不能解决,那只能更换流量计了。浮子、椎管附着水垢污脏等异物层,那么就要对内部进行清洗蒸汽吹扫,还要防止损伤椎管内表面和浮子,保持浮子原有光洁度。还有就是流体本身发生变化,与原来的密度相比发生变化,不能准确测的流量。那么使用时只能修改内部参数使得适应新流体的密度等特性。气体、蒸汽、压缩性流体温度压力变化,那么温度压力等运行条件变化对流量测量值影响颇为灵敏,按新条件作换算修正。流体脉冲,气体压力急剧变化,指示值波动,那么虽然浮子偶发跳动影响不大,但周期性振荡,管道系统必须设置缓冲装置,或者改用有阻尼的仪表。液体中混入气泡,气体中混入液滴,那么混入物改变密度等影响,做必要改进排除之。用于液体时仪表内部死角存留气体,影响浮子部件浮力,那么对小流量仪表及运行在低流量时影响显著,排除气体。5.指针指示呆迟  浮子和导向轴间有微粒等异物或导向轴弯曲等原因卡住,解决方法是拆卸检查,清洗,铲除异物,校直导向轴等。导向轴弯曲的原因大多是阀门快速启闭,浮子急剧升降冲击所致。磁耦合浮子组件磁铁四周附着铁粉或颗粒,解决办法是拆卸清洗使之运行自如,不卡顿。运行初期利用旁路管,充分冲洗管道。为防止长期使用时管道可能产生铁锈,可在金属管浮子流量计前装设过滤器。指示部分连杆或者指针卡住,解决办法是手动试磁铁耦合连接的运动连杆,有卡顿阻尼部位调整之。检查旋转轴与轴承间是否有异物阻碍运动,解决办法是清除义务或更换零件。磁耦合的磁铁磁性下降,解决办法是拆卸下仪表,用手.上下移动浮子,确认指示部分指针等平稳地跟随移动;不跟随或者跟随不稳定则换新零件。德国VSEAHM01流量计选型样本  涡街流量计是基于流体力学中著名的“卡门涡街”研制的。在流动的流体中放置- -非流线型柱形体,称旋涡发生体,当流体沿旋涡发生体绕流时,会在涡街发生体下游产生两列不对称但有规律的交替旋涡列,这就是所谓的卡门涡街,如图1所示。   大量的实验和理论证明:稳定的涡街发生频率ƒ与来流速度v1及旋涡发生体的特征宽度d有如下确定关系叫:   式中St为斯特罗哈数,与雷诺数和d相关。   当雷诺数Re在一定范围内(3 X102~2 X105)时(4],St为一常数,对于三角柱形旋涡发生体约为0.16   雷诺数的定义为   式中S为管道的横截面积。   由高精度气体涡街流量计的测量原理可知,通过测量旋涡发生频率仅能得到旋涡发生体附近的流速vI,由式(3)可知在横截面积一定的情况下,流体的流量Q与流体的平均流速v成正比,因此要精确计量流体的流量必须找到`v与v1的对应关系。   根据流体力学理论,在充分发展的湍流状态下,流体的速度分布有如下关系式川:   式中:vp为到管壁距离为y的P点的速度;y为点到管壁处的距离;Vmax:为管道中的最大流速,通常取管道中心的速度;R为管道的半径;n为雷诺数的函数。 表1中给出了部分雷诺数与n的对应关系。   由于旋涡发生体的位置固定,因此当雷诺数一定时v1与`v有固定的比例关系换言之,当雷诺数Re变化时,二者的比值也发生变化,   图3给出了不同雷诺数下充分发展的湍流的流速分布,如图所示Re越大,流速分布越平滑,即旋涡发生体附近的流速越接近平均流速,故ƒ( Re)应为单调递减函数。图4给出了3台50mm口径,宽度14 mm三角形旋涡发生体的气体涡衔流量计,在20℃,一个标准大气压下,不同雷诺数下的K值曲线。如图所示实验数据与理论分析基本一致,因此涡衔流量计的测量原理即决定了仪表系数的非线性特性。若要提高涡街流量计的计量精度,必须针对不同的流速分布对K值进行修正。电磁流量计外壳用不锈钢,测量管内壁用聚四氟乙烯,转换器封闭在一个长方体金属壳内,内部电路板上有一四位数的数据盘,可作测量值的指示器。变送器与转换器之间通过两根电缆连接,变送器安装在管道上,转换器固定在旁边的框架上。这种流量计无论零点还是量程都不能白行调整,只能在指定厂家标定,使用很不方便。该流地计投用运行还未到-年,指示便出现了故障经检查发现变送器电路板发生腐蚀,有几只晶体三极管管脚已经锈断,当时并没有引起我们足够的重视,只是更换几只三极管便又重新装上,这样修复后该表又运行几个月,然后又失去指示。当我们再次检查该表时,发现变送器的电路板及电缆已全部腐蚀掉,于是该表报废。这才引起我们的警觉,原来因该表安装的地方离高压甲铵泵及高压氨泵太近,停车时排放的及平时泄漏的氨和甲铵以及夹带的氨气常环绕在该表周围,致使该表一直工作在腐蚀性环境中,加上我们只注意该表的耐腐蚀特点,而忽略该表的脆弱性,最终导致该表的损坏。  在安装时,为防止腐蚀性气体侵入电子室,在接线盒盖边缘及电缆接头处全部用硅橡胶密封,并用水电两用胶带加以封固,以达到防腐的目的。该表投用后运行一年多时间,便再次发生了同样故障,变送器电路板及电缆又被腐蚀,表又损坏。  事故的不断发生,使我们对腐5蚀问题进行仔细的思考,为什么变送器密封那么好还会腐蚀?而与变送器仅半米之遥的转换器却安然无恙?经过仔细的观察和分析,发现安装变送器的管道因流速高,一直在不停地轻微震动,密封胶很容易松动而脱落,不停的震动又为氨气的侵入增加了助动力,而固定在框架上的转换器,由于没有震动,各密封口完好,因此没有腐蚀。  找到了出故障的原因,也就找到了排除故障的措施。这种电磁流量计较前两种要先进得多,它采用微处理器技术,在转换器上有一双排液晶显示器,在显示器下边有三个按钮,通过它们可以对流量计的参数进行组态设定,并可翻看流量计的有关参数设置。该表具有比较强的外部通信接口能力,能以模拟和数字方式与其它外设通信,并带有很强的自诊断功能,参数的输入及选择以数据直接输入及主副菜单选择方式进行,可方便地进行零点调整和量程设定,操作十分方便。为了保证这块表能安全运行,我们在吸取前两次教训的基础上,采取另-种防腐措施即吹气防腐法。这种方法的原理是设法使变送器接线盒内纯净气体压力增大,致使有害气体不能侵入接线盒内,从而达到防腐目的。具体方法是在电磁流量计的电子室上打两个小孔,一个进气,一个排气,然后接上仪表空气,让空气保持微小流量,电子室内纯净气的压力高于大气压,气流只能从孔隙由内向外流动,从而阻止有害气体的侵入,起到防腐作用。该表投入运行后,效果一直很好,在时隔两年的1994年大修中,打开电子室检查,没有发现腐蚀,可见吹气防腐确实起到了作用。德国VSEAHM01流量计选型样本涡轮流量计作为速度式仪表,以动量矩守恒为基础,涡轮流量计基本力矩平衡方程为[1]: 式中 Tb一轴与轴承的粘性摩擦阻力矩(流动产生的力矩); Td一涡轮流量计转动的驱动力矩; Th一轮毂表面的粘性阻力矩; Tm一磁电阻力矩和轴与轴承的机械摩擦阻力矩之和; T1一叶片顶端与传感器外壳的粘性摩擦阻力矩; Tw一轮毂端面粘性摩擦阻力矩; J一涡轮的转动惯量; ɷ-涡轮转动的角速度。   当流速较低时,涡轮流量计处于静止状态,此时角速度ɷ非常低,接近于0,Tb和Tw也可以忽略不计。在这种情况下,式(1)可以简化为:   由式(2)可以看出提高驱动力矩是降低涡轮流量计启动排量的一-条捷径。如图1所示,传统涡轮流量计入口端是直管段和轴向导流片,流体流经涡轮叶片之前只有轴向速度,对涡轮的驱动力矩只是对涡轮叶片作用力的径向分力产生的力矩。因为涡轮叶片螺旋角为45°,如果将导流片改为螺旋角为-45°的螺旋导流片(图2),当流体进入导流片时会产生旋转,方向与涡轮叶片正交,使得流体在轴向流动速度不变的基础上增加了径向的旋转运动,流体的旋转方向与涡轮叶片的转动方向一致,在相同流量条件下,增加了流体对涡轮叶片的驱动力,实现降低启动排量和提高分辨率的目的,整体结构如图3所示。1.孔板流量计前后的直管段必须是直的,不得有肉眼可见的弯曲。2.安装节流件用得直管段应该是光滑的,如不光滑,流量系数应乘以粗糙度修正稀疏。3.为保证流体的流动在节流件前1D出形成充分发展的紊流速度分布,而且使这种分布成均匀的轴对称形,所以①直管段必须是圆的,而且对节流件前2D范围,其圆度要求其甚为严格,并且有一定的圆度指标。具体衡量方法:A.孔板流量计前OD,D/2,D,2D4 个垂直管截面上,以大至相等的角距离至少分别测量4个管道内径单测值,取平均值D.任意内径单测量值与平均值之差不得超过±0.3%B.在节流件后,在OD和2D位置用上述方法测得8个内径单测值,任意单测值与D比较,其最大偏差不得超过±2%②节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的局部阻力件形式有关和直径比β有关,见表1(β=d/D,d为孔板开孔直径,D 为管道内径)。4.孔板流量计上游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的形式和β=0.7(不论实际β值是多少)取表一所列数值的1/25.孔板流量计上游侧为敞开空间或直径≥2D大容器时,则敞开空间或大容器与节流件之间的直管长不得小于30D(15D).若节流件和敞开空间或大容器之间尚有其它局部阻力件时,则除在节流件与局部阻力件之间设有附合表1上规定的最小直管段长1外,从敞开空间到节流件之间的直管段总长也不得小于30D(15D)。电磁流量计传感器的接地  为了使电磁流量计可靠的工作,提高测量精度,不受外界寄生电势的干扰,传感器应有良好的单独接地线,接地电阻<10Ω.在连接传感器的管道内若涂有绝缘层或是非金属管道时,传感器两侧还应加装接地环.a、在金属管道上的接地方式:金属管道内避没有绝缘层,按下图接地.b、 在塑料管道上或有绝缘层、油漆管道上的接地方式:电磁流量计传感器上的两端面应加装接地环,使管内流动的被测介质与大地短接,具有零电位.否则,电磁流量计无法正常工作.

您如果需要德国VSEAHM01流量计选型样本的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网