德国VSEVHM02-2/流量计公司同时我们还经营:1.仪表正确通电 电磁流量计无电源开关接入电源即进入工作状态.仪表在通电后首先进行自检显示器同时显示生产商的电话号码.自检通过后进入测量状态测量指示灯闪烁.2.显示切换 仪表工作在测量状态时按AT键可以切换流量的瞬时值显示和累积量显示或同时显示瞬时量和累积量.同时瞬时量指示灯和累积量指示灯相应点亮显示累积量时仪表上排数字显示高6位累积流量,下排数字显示低8位累积流量瞬时量和累积量同时显示时下排只显示累积流量的低8位.3.背光启闭 仪表在测量状态时按压INC键可以开启或关闭显示的背光.4.前24小时累积量显示 在测量状态下按压SET键约10秒至上排出现LOC字符输入0001~0024后按SET键可查阅当前累积流量或前23小时每小时的累积流量再按SET键返回测量状态.5.累积流量清零 仪表在测量状态时按 SET 键至显示LOC后输入9090按SET键返回测量状态再按INC键可以将累积流量清零.6.参数设置 在电磁流量计处于测量显示状态按SET建10秒显示器上排出现"LOC"字符下排出现"0000"数字.点按AT键1次个位数可修改每点按AT键一次可修改位从右向左移一位同时上排显示器最右端出现可修改的位数从右向左数密码数值输入完毕再按SET键两次进入相应参数组内的第一个参数.每按SET键两次既在确认本次参数值的同时又进入下一个参数依此类推到最后一个参数后转回测量状态界面.各组参数见"功能参数速查表".环形孔板流量计适用于各种流体(气体,蒸汽,液体)介质,它除了具有标准孔板的结构简单,牢固,安装使用方便等特点以外,还具有以下优点:1.更适合测量饱和蒸汽,过热蒸汽以及煤气,冷却水等脏污流体.2.更容易适应高温,高压流体的流量测量.3.比圆缺孔板,偏心孔板工作更可靠,测量更精确.4.以较低的成本制成耐腐蚀型,测量腐蚀性流体的流量.5.由于本产品外部形状简单,容易制成夹套保湿型在夹套内通蒸汽,可以防止被测流体(如重油,渣油等)在测量管段内凝结或粘附;通以冷却液,可防止易汽化的液体在流经测流板时形成汽液两相流.6.采用均压环结构,减少了测量误差来源引至差压变送器的是在测流板上,下游处取压管横截面的静压平均值,减弱了上游局部阻力形成的速度分布畸变对精度的影响,实际精度更接近基本精度.7.要求较低的前后直管段8.采用一体型结构形式,减少管线敷设.9.采用带远传膜盒的差压变送器,可以测量诸如煤粉,渣油等脏污液体的流量.工作原理:环形孔板流量计和普通的标准孔板一样,依据的基本原理是流体连续性方程和伯努利方程. 把环形孔板安装在圆管中,当液体流经节流装置时,其上,下游侧之间就会产生压力差.连接方式:法兰连接和焊接连接.超声波流量计根据声道布置形式可以分为单声道超声波流量计和多声道超声波流量计。单声道超声波流量计在测量管道上只安装一对超声波换能器,多声道超声波流量计则在测量管道上安装多对超声波换能器,包含多个独立的超声波传播路径。多声道超声波流量计对于流场的适应能力更强,可以提高流量计的测量精度;然而单声道超声波流量计在小管径场合应用更为广泛,而且通过反射镜的应用单声道超声波流量计的声道布置形式越来越复杂,测量精度也随之提高。根据声道的传播方式,常用的单声道超声波流量计主要有Z型流量计,U型流量计,V型流量计,N型流量计和三角型流量计,不同传播类型的单声道超声波流量计声道示意图如图4-1所示,其中红色虚线表示声波传播路径。 多声道超声波流量计采用数值积分的方法提高流量修正系数的精度,可以解决单声道超声波流量计测量不确定度误差大的问题。多声道超声波流量计通常采用Gauss积分方法计算式(2-7)中各声道位置ri/R和相应的权重系数wi。在相同采样点数、节数自由的情况下,Gauss 型数值积分方法相对于辛普森公式和梯形公式等插值型积分方法计算精度更高。对于圆形测量管道的超声波流量计中声道位置和相应权重系数的计算一般采用Gauss-Jacobi积分方法。按照 Gauss-Jacobi 积分方法的零点确定各声道高度,按积分方法中的权重系数计算声道权重系数。 实际中各声道上速度分布与理想的代数多项式表示的流速分布差异很大,特别是无法体现管壁处流速为零的特性,导致流量的积分结果偏高,影响流量计的测量精度。为了使计算结果更加接近于圆形管道内液体充分发展的真实值,提出了采用最佳圆截面算法(OWICS)计算声道位置ri/R和权重系数wi的方法,最佳圆截面算法其实是基于正交多项式的 Gauss 积分方法。Gauss-Jacobi和OWICS积分方法计算各声道位置和权重系数如表4-1所示.1.从经济方面考虑购置流量计的费用 购置流量计时应比较不同类型流量计对整个测量系统经济的影响.例如,范围度小的流量计比范围度宽的流量计在相同测量范围下,需要多台流量计并联和多条管线才能覆盖,因此除流量计外还需增加许多辅助设备(如阀门、管线附件等).虽然表面上看流量计费用少了,但是其他费用则增加了,两者加起来也许并不合算.例如,安装孔板流量计加上差压计的费用相对便宜,但组成测量回路包括孔板的固定附件等其他费用,可能超过基本件费用很多.2.安装费用 在购置流量计时,不仅要考虑流量计的购置费,还需考虑其他费用,如附件购置费、安装调试费、维护和定期检测费、 运行费和备用件费.例如,许多流量计使用时应配备比较长的上游直管段以保证其测量性能.因此,正确的安装需要额外布置管道或备有旁路管道作定期维护.所以安装费应多方面考虑,例如,还应包括运行所需的截止阀、过滤器等辅助费用等.3.运行费用 流量计运行费用主要是工作时能量消耗,包括电动仪表内部电力消耗或气动仪表的气源耗能以及在测量过程中推动流体通过仪表所消耗的能量,亦即克服仪表因测量产生压力损失的泵送能耗费等.比如差压式流量计产生的差压,很大一部分不可恢复; 容积式流量计和涡轮流量计也具有相当阻力.只有全通道、无阻碍的电磁流量计和超声流量计此费用基本为零.插入式流量计由于用于大管径阻塞比小,其压力损失亦可忽略.据测算,管径为lOOmm的差压式孔板流量计1年泵送能耗费与流量计购置费相当, 如果换用电磁流量计,其购置费仅相当于4年多差压式孔板流量计的能耗费.可想而知,管径越大,泵送能耗费占总费用的比例越高.一般认为超过5000mm的流量计应尽可能选用低压损和无压损的流量计.例如,供水工程通常采用低压损的文丘里管等差压式传统流量计,而极少用孔板,现在则更新为电磁流量计和超声流量计.4.检测费用 检测费用应根据流量计的检定周期决定.一般用于贸易结算的原油或成品油的检测,常在现场设置标准体积管对流量计进行在线检定.5.维护费用和备用件费用等 维护费用为流量计投入使用后保持测量系统正常工作所需费用,主要包括维护费和备用件费.有运动部件的流量计需进行较多维护工作,如定期调换易磨损轴承、轴、转轮、传动齿轮等;没有运动部件的流量计也需进行检视,如最普通的用几何测量法检查差压式流量计.备用件费用会随着流量计性能提高的程度而增加.选用流量计时应考虑同时增加备用件的购置费用,尤其是从国外进口的流量计,有时常会因易损备件的购置问题而替换整台流量计.三聚磷酸钠(俗称五钠)的生产过程中有一个中和过程,在该过程中磷酸和纯碱按一定比例混合、反应后被制成可用来进一步生产五钠的中和液。在这样一一个过程中为使产品质量得到有效控制就需要对加入中和罐的磷酸量根据分析结果进行精确的批量控制。存在的问题和解决方案 图1中流量计自1983年装置投产后就一直使用,到1997年已是残破不堪,常因其故障使装置的生产遭受影响。在这种情况下如何来解决好这个问题就很自然地纳入了我们的工作日程。我们首先想到的是想按原型号进行更新,但经市场询价后我们发现这种老式的仪表现在的售价实在太昂贵,竟达十一万多人民币一台,很不合算。经研究后,我们认为智能式电磁流量计能担此任(当时集批处理功能于一身的流量计还不多),其完善的功能和一体式结构既能够通过表头上的三个红外触摸键使将来的操作完全和老仪表一样在现场完成,也可利用这种仪表本身具有的HART通信功能和RS485接口方便地使用HART通讯器或其它智能终端实现远程操作。该方案投资仅为三万元人民币左右(不计远程终端,暂未用)。图1为控制系统图 2仪表选型和系统设计 (1)根据工艺的酸流量情况我们选用了口径为DN50的电磁流量计,针对磷酸的特殊腐蚀特性确定了聚四氟乙烯(PIFE衬里和钽电极,电源为24VDC(因电磁阀也用该电源)。 (2)调节阀延用原旧阀。 (3)增加一个直流24V2.SW的二位三通电磁阀,用来控制调节阀的气源(该气源在旧系统中直接受控于流量计)。. (4)因所选流量计本身的触点输出容量最大仅为0.1A24W故增加一-个触点容量为0.5A24V激励电压为24VDC的中间继电器(该继电器直接固定在流量计自身的接线盒内)用以可靠驱动电磁阀。系统构成示意图见图2。1.一次测量元件引起的误差 孔板流量计中的节流元件是尖锐的直角边缘,流体在节流元件的入口收缩,根据伯努力方程,流速增加,压力减小,孔板的测量原理就是根据孔板入口和出口的压差进行测量的。孔板平钝后流出系数增大,产生测量误差。流出系数对蒸汽流量测量的影响是普遍存在的。 测量管也是节流装置的组成部分,其结构尺寸对流体流动状态有重要的影响,测量管除满足前10D后5D的要求外,还对内表面的光滑度有要求。粗糙管的流速分布与光滑管是有区别的,流出系数也不相同,管道结垢、腐蚀,流出系数发生变化,产生测量误差。 对于孔板入口边缘磨损的问题,我们可以选用标准喷嘴,由于喷嘴入口是一个光滑的曲面,它的抗磨损,抗积污,抗变形程度远好于孔板,流出系数稳定性也比孔板好,压力损失也比孔板小得多,而且它的检定周期为4年,大大减少了维护费用。 对于测量管的问题,在管道安装时就尽量选用光滑度高,质量好的管道,必要时请专业厂家定制测量管道、连接法兰,冷凝器等,补偿用的温度和压力测量点也可以统一开工获取。虽说一次性投资高些,但由于投入使用后没有特别原因,一般不进行更换,还是使用周期越长越好,这样综.合经济效益还是高些。2.测量信号的传递失真 测量信号传递是孔板前后的差压信号经导压管传递到差压变送器,由于结构的不同,孔板流量计不同于涡街流量计那样直接装在管道上,它需要进行信号传递。对于蒸汽流量测量而言,传递部分可由阀门,导压管,冷凝器等部件组成。对于信号传递部件来讲,应保证传递信号不失真。实际使用中的大部分故障,往往是信号传递失真引起的。差压信号产生的传递失真比作为补偿用的温度和压力信号失真影响更大,必须引起注意。冷凝器在信号传递中处于关键位置,冷凝器中的液面保持一定高度,多余的冷凝液要回流到蒸汽管道,既要保证冷凝器中蒸汽很好地冷凝,又要使冷凝液回流畅通无阻。 气相导压管的一次根部阀门应保证蒸汽气相进入冷凝器,冷凝器里面多余的冷凝液回流到蒸汽管道,否则两只冷凝器液面不能保持相平,会对差压信号产生附加误差。一次根部阀门尽量选用闸阀,保证压力信号传递通畅无阻,减少测量误差。 测量用的导压管要加保温伴热,否则冬季不能正常工作。不管采用电伴热还是蒸汽伴热,一定要保证两只导压管受热均等,不然会因导压管中的液体的密度不同而产生附加差压误差。 作为压力补偿用的变送器一般和压力取压口不在同一高度上,如果变送器比取压口低,所测出的压力为管道中蒸汽的压力加上导压管中冷凝液产生的压力,可在变送器中进行正迁移将这部分压力迁移掉。使变送器测出的压力为管道中实际蒸汽压力。3.蒸汽密度问题产生的误差 测量蒸汽质量流量时要根据蒸汽的密度进行计算,因蒸汽的密度计算不准确产生测量误差。蒸汽流量测量仪表中涡街流量计是用工艺车间提供的蒸汽密度值为参考值,不是实际的密度值,得出的蒸汽流量会和实际流量有误差。选用涡街流量计时,最好选用能进行温度和压力补偿的型号,并且安装测温和测压元件取得温度和压力数值。孔板式流量计测出的流量由DCS系统显示,没有进行温度压力补偿。为了提高测量的准确度,必须进行温度压力补偿。对于孔板流量计,取得差压信号的同时,还需测得温度和压力信号,通过DCS中的专用软件进行温度和压力补偿。4.相关系数的影响 流出系数C和可膨胀系数ε在一定范围内可看作常数,但是,当蒸汽的状况偏离设计状态时,其流出系数C和可膨胀系数ε就会发生变化,就不能视为常数。测量小流量时,随着雷诺数变小,流出系数C将产生较大的变化。测量高压时,则必须考虑气体的可膨胀系数ε的影响,如果我们只补偿密度变化的影响,即使实现了对密度的完全补偿,其它各参数变化累加后的最大误差仍达6%左右,其中,可膨胀系数ε引入的误差最大。所以,要想提高仪表的测量精度,除补偿密度外还应考虑整个补偿方程中其它参数变化的补偿问题。DCS中的蒸汽测量模块中,不仅有密度补偿方式,还有流出系数C和可膨胀系数ε的修正办法,只要我们选用合适的流量测量模块,就能提高蒸汽流量的测量准确度。 一般认为,蒸汽干度X较高(X≥95%)时流体可视为单相流体。温度压力补偿可按通常方法进行。但出现-定误差。干度越低密度越大。在蒸汽干度较低(X<95%)时,管道中的流体处于二相流状态。情况严重时,流体分层流动,产生误差更大。目前还没有在线的干度测量仪表测量蒸汽的干度,最好的办法就是加强蒸汽传输管道的保温,提高蒸汽的过热度,使蒸汽的干度较高,孔板流量计测量也比较准确。德国VSEVHM02-2/流量计公司 高流速时,电磁流量计中的流体为湍流,且雷诺数越大,流体小尺寸结构越小。但流体整体向前的流速不会因为湍流而减小,这样的情况下可知电磁流量计流体中的非导电物体的尺寸更小。当含水率不变,非导电物体物质半径变小后对电磁流量计的整体流速分布不变、对流量计的磁场分布影响较小。根据式(1)可知,电磁流量计中非导电物质的半径大小对流量计的权重函数是有影响的。 当电磁流量计中心横截面内含有M(M=0,1,2.,-.)个油泡时传感器的权重函数分布情况,本文算例设定M=3权重函数分布情况计算方式。图1为电磁流量计传感器截面内存在3个球形油泡时的结构模型图。其中,x轴与y轴与图1描述--致,图1中只显示了测量区域部分,测量区域流体中存在3个油泡。y正半轴、负半轴与管壁的交点是流量计的电极位置。 图1中3个油泡相互不重叠,此时传感器内部感应电势仍满足Laplace方程。为了对该问题进行求解,需建立2种坐标系,一种是以传感器中心为原点建立的二维直角坐标系(x,y),另一种是以各个油泡中心为原点建立的M个二维极坐标系(ri,θi)。首先在二维直角坐标系下对该问题进行求解(本例M=3),求解感应电势方程时需借用一个辅助的格林函数G,G满足Laplace方程且边界条件 式中,R为电磁流量计半径的长度值;მG/an为电势在半径方向上的导数;δ(θ)为电势G在流量计管壁处所满足的条件,其值仅在电极表面处不为0。当流体中存在油泡时,G表达式为 式中,R为测量管的半径;x与y分别表示测量区域中的位置。 当电磁流量计流体中存在3个油泡时,G=G+G1+G2+G3图2显示了流量计流体截面中存在3个不重叠的油泡时,流量计截面内部权重函数wy分布图;从式(2)以及仿真图中可以发现油泡所在位置权重函数值是0。当然,存在多个油泡分布在不同位置流体中时权重函数分布情况也可以用上述方法计算。 仿真实验中,设定不同大小的非导电物质对电磁流量计权重函数进行仿真,如图3所示为不同大小非导电物质对电磁流量计权重函数的影响。图3中左边的分别为权重函数分布图,右边分别为权重函数等势图,其中R单位为cm。从图3中可见,当电磁流量计中的非导电物质半径越来越小,对电磁流量计的权重函数的影响就越小。 为了更清楚地揭示电磁流量计的权重函数与流量计中非导电物质半径之间的关系,定义c为非导电物质对流量计权重函数的影响的评价指标式中,Wxy为含有油泡等非导电物质时电磁流量计在测量区域坐标(x,y)的权重函数;Wxy0为电磁流量计不含非导电物质时测量区域坐标(x,y)的权重函数;A为权重函数区域(测量区域)。 图4为不同大小非导电物质对流量计权重函数的影响分析图。图4中横轴为非导电物质半径,纵轴为权重函数的影响因子c。从仿真结果可以看出流体中的非导电物质半径较小时,对电磁流量计的权重函数影响越小。在本例中,当流体中非导电物质小于0.02R时,对电磁流量计的权重函数分布几乎没有影响。1.根据各检定点每次检定时标准器测得的实际体积,通过测量标准器和流量计的温度、压力、压缩因子等参数.计算出各检定点每次检定时标准器换算到流量计的累积流量和各检定点每次检定时流量计显示的累积流量,计算流量计各检定点单次检定的相对示值误差.2.对于某种型号的电磁流量计,需要计算被检流量计各流量点单次检定的引用误差.3.当标准器显示为累积流量时,可根据各检定点每次检定时间,计算流量计各流量点单次检定的瞬时流量相对示值误差.4.使用质量法装置检定时,需测出液体的密度,并考虑密度的空气浮力影响,把电子秤显示的质量换算到实际体积.5.计算流量计各检定点的相对示值误差,取流量计高区和低区各检定点相对示值误差中最大值作为流量计的相对示值误差.6.对于某种型号电磁流量计,需要计算被检流量计各流量点单次检定的引用误差。取流量计各流量点的最大值为引用误差的误差。7.带有脉冲输出的流量计(如涡街流量计或涡轮流量计)检定后需计算各检定流量点的系数和K系数的相对示值误差.环形孔板流量计适用于各种流体(气体,蒸汽,液体)介质,它除了具有标准孔板的结构简单,牢固,安装使用方便等特点以外,还具有以下优点:1.更适合测量饱和蒸汽,过热蒸汽以及煤气,冷却水等脏污流体.2.更容易适应高温,高压流体的流量测量.3.比圆缺孔板,偏心孔板工作更可靠,测量更精确.4.以较低的成本制成耐腐蚀型,测量腐蚀性流体的流量.5.由于本产品外部形状简单,容易制成夹套保湿型在夹套内通蒸汽,可以防止被测流体(如重油,渣油等)在测量管段内凝结或粘附;通以冷却液,可防止易汽化的液体在流经测流板时形成汽液两相流.6.采用均压环结构,减少了测量误差来源引至差压变送器的是在测流板上,下游处取压管横截面的静压平均值,减弱了上游局部阻力形成的速度分布畸变对精度的影响,实际精度更接近基本精度.7.要求较低的前后直管段8.采用一体型结构形式,减少管线敷设.9.采用带远传膜盒的差压变送器,可以测量诸如煤粉,渣油等脏污液体的流量.工作原理:环形孔板流量计和普通的标准孔板一样,依据的基本原理是流体连续性方程和伯努利方程. 把环形孔板安装在圆管中,当液体流经节流装置时,其上,下游侧之间就会产生压力差.连接方式:法兰连接和焊接连接.1.电磁流量计在浆液中的特别安装要求 首先,要对电磁流量计的特别安装要求进行分析,首先要了解此电磁流量计相对于其它一些流量计在特征方面有什么不同之处,电磁流量计的特点在于采用了法拉第的电磁感应定律,测量方法主要以直接测量的方式进行。并且,在测量结果上不受到流体密度、粘度、温度以及压力的影响,没有阻流件与相应的压力损失,同样也不会在高流速的情况下发生一些气体腐蚀的现象。不过,由于在实际的安裴过程中没有采用科学的安装方法以及严格安装电磁流量计的特别安装要求,部分电磁流量计极易在实际的运作中造成仪表测量误差的出现,严重的还会造成仪表的损坏。在进行电磁流量计的安装过程中,需要严格按照安装流程进行操作,由于现场操作的复杂性,为了确保电磁流量计可以在运行效果上达到一个较好的操作水平,可以进行三台以及电磁流量计的统一安装操作,在气化炉的顶部进行安装,从而进一步增强测量效果,同时延长流量计的前直管段的使用方式,以便解决加压泵在工作过程中造成的脉动影响。2.电磁流量计使用方法建议 在单机进行试车阶段,需要严格安装使用方式提示,禁止对电磁流量计进行送电。气化炉在停车后,需要对电磁流量计先进行停电操作,然后再对其进行清洗,主要足清洗其中的管线,避免因电磁流量计内部的传感器励磁形成的磁场吸附了电极周围的铁锈而造成最终清洗效果的降弱。在正常的运行阶段,如果发现电磁流量计发生-些波动或干扰现象的出现,需要对其原因进行分析,主要的原因可以概括为如下几个方面:第一为泵引发的波动因素,主要因为煤浆泵在某个工作时间内出现了异常工作效果,整体的流量值发生变化的可能性不大,但由于流量脉动的变化波动量也随之发生了较大的变化。第二为煤浆引起的波动,前文提到,煤浆属于混合物,其中不仅含有煤水化合物,还包括一些金属颗粒,随着这些金属颗粒含量的增多,尤其是电极周围堆积的金属颗粒随着电极压力的形成逐步增加,从而造成停车现象的出现。第三为电磁流量计输出信号的尖脉冲千扰,因为煤浆含有的大颗粒金属摩擦导致电极之间瞬间产生尖脉冲信号干扰,井且电磁流量计内部的传感器受到温度的影响,使得煤浆管线的冲洗难度不断增加。3.电磁流量计的特殊加工 在进行电磁流量计的特殊加工过程中,要使用锰合金等特殊材质的加工方法进行防护冲刷磨损套的制作。对一些电磁流量计的碳化效果,电磁干扰效果的主要作用是指在防护冲刷效果的基础.上,以电磁流量感应为防护基础,以电极防护标准作为碳化防护效果的主要依据,根据电磁流量计加工的特性,在实际的应用效果上进行特殊加工。针对铁磁性质的干扰,需要进行水煤浆磁过滤操作,在经济条件允许的情况下可以采用不锈钢的输送管道,并定期对电磁流量计内部进行检查与清理。针对电磁流量计的参数设定问题,不能按照最佳的安装条件时测定的参数进行,也不能牺牲灵敏度弥补脉动流造成的波动,建议整体的阻止时间不应操作三十秒这一区间范围。值得一"提的是,只有在进行防护检修的过程中,才能最终确定相应的电磁流量参数,应当建c起统一的标准积极发挥其计量参数的特长与优势。德国VSEVHM02-2/流量计公司流量计准确度影响的实验分析 1实验要求 实验用钟罩式气体流量计标定装置标定DN50G65气体涡轮流量计,其准确度等级为1.5级;最小流量为Qmls:10m'/h,最大流量为Qmax:100m³/h;流量计量程比为1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2实验思路 实验以在流量计前端安装一对大小头作为扰流件,在扰流件和流量计之间安装不同长度的直管段。经过一定时间段的运行,确认标准裝置与流量计的流量偏差以及疣量计的重复性,以此分析扰流件对流量计准确度的影响。 3实脸分析 3.1在流量计.上游安装40cm直管段,下游安装19cm直管段实验 流量计上游直管段长度大于5D(25cm),下游直管段长度大于3D(15cm),实验安装图如图1所示,示意图如图2所示。 实验数据如表3所示。 从表3可以看出,扰流件安装在距流量计上游端较远时,其运行数据的流量偏差与重复性符合流量计的国家标准。 3.2在流量计上游安装29.1cm直管段,下游安装19cm直管段实验 流量计上游直管段长度较大于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图3所示. 实验数据如表4所示。从表4可以看出,扰流件安装在距流t计上游端接近5D处时,其运行数据的流量偏差(qmin≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。 3.3在流量计上游安装19cm直管段,下游安装40cm直管段实验 流量计上游直管段长度小于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图4所示 从表5可以看出,找流件安装在流量计上游端小于5D处时,其运行数据的流量偏差(qai≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。1.制定气体流量计定期清理表内液体的制度 为保障旋进旋涡流量计计量的准确性,降低故障概率,在实际的运行与使用过程中,要进行计定期进行流量计各个部件的清理,尤其是要清理气体流量计内的无关液体,相关部门需结合其具体的使用情况,确定最佳的清理周期,应用恰当的清理方法,保障清理的效果.2.及时更换气体流量计漩涡发生体 漩涡发生体如果在使用的过程中出现了损坏现象,同样会影响计量精度.因此,这就要求在日常的维护过程中,需要定期进行气体流量计漩涡发生体的定期更换.通常情况下,漩涡发生体的损坏主要是由于气中含有细小泥沙等杂物,这些杂物会在流量计的运行过程中对螺旋体产生一定的冲击,进而导致传感器出现故障,这种情况下,就需要保障气中不存在任何无关的杂物,及时清理流量计螺旋体,避免其他杂质、硬物造成的冲击与损坏.3.现场进行压力系数调节 对每台旋进旋涡流量计而言,在出厂的过程中,都存在固定压力与温度系数,如果在实际的计量过程中,额定压力高于介质压力时,流量计的计量结果会与实际存在较大的偏差,甚至无法正常显示.因此,在实际的计量工作中,需结合介质压力等参数,可以进行压力系数的调节与控制.4.加强计量器的管理 机械干扰是旋进旋涡流量计最常见的故障,在实际的使用过程中,为了避免这些故障的出现,相关人员需要加强对流量计的管理,在安装的过程中,要严格遵守相应的安装规范,保障流量计前后良好的固定性,在操作的过程中,避免出现各种不当的操作行为.
您如果需要德国VSEVHM02-2/流量计公司的产品,请点击右侧的联系方式联系我们,期待您的来电