欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEVS4流量计现货

发布时间: 热度:
德国VSEVS4流量计现货同时我们还经营:电磁流量计等节点设备和站内PC机间的通信采用异步串行通讯控制规程,并采用地址位唤醒握手协议.因此在协议中规定了传地址和传数据两种不同的...

德国VSEVS4流量计现货同时我们还经营:电磁流量计等节点设备和站内PC机间的通信采用异步串行通讯控制规程,并采用地址位唤醒握手协议.因此在协议中规定了传地址和传数据两种不同的帧格式,如图4.4所示.地址帧和数据帧都有11位,其中第l位和最后l位相同,分别为起始位和停止位,紧接起始位的是8位数据位,第9位为标志位,用来区分所发送/接受的帧信息是地址帧还是数据帧.第9位为1时,表示PC机发送/接受的是“地址帧":第9位为0时,表示主机发送/接受的是"数据帧".命令帧与校验和的发送格式与数据帧相同,因此可由数据帧演化得到.根据高含水原油这一特殊介质及其使用环境的特点,对早期广泛应用于注水、注聚等计量中的电磁流量计进行了相关的技术改进。(1)对传感器进行防爆处理。通过现场应用进行综合分析,认为高含水原油的计量场所是油气密集的地方,需要对传感器进行防爆处理才能满足工作需要。根据传感器的特点及其使用环境的要求,选用了传感器的复合防爆型式,即浇封隔爆型,防爆标志为mdIIBT4.关键技术是传感器主体结构采用了浇封工艺技术、接线盒采用了隔爆外壳。接线盒的隔爆接合面为螺纹隔爆接合面,引人装置采用密封圈压紧螺母式,产品通过了国家防爆电气产品质量监督检验测试中心的5项试验。(2)提高转换器的输人阻抗,保证流量计的测量精度。对电磁流量计来说,传感器产生的感应电势只有几毫伏,如要进行准确测量,要求转换器的输人阻抗远远大于传感器的内阻,才能保证仪表的精度。电磁流量传感器的内阻仅与被测介质的电导率和电极直径有关。高含水油的电导率随含水情况有所变化,因此,采用了专用前置放大器,相应地提高了转换器的输人阻抗,保证了测量精度。(3)转换器实现智能化。智能电磁流量计采用了自动跟踪式励磁控制和智能反馈式信号放大处理技术,使用了多CPU协同信息处理的方法,使仪表在功能上具有了支持各种传感器匹配与校验、数字与模拟的系统连接、自诊断和安装调试测试、断电信息保护、在线信息查询、软件冲击自动恢复、多单位多形式的计量显示选择等全方位的智能化功能,操作使用十分方便。(4)改进型电磁流量计的主要技术指标。①适应的场所:转油站、联合站的高含水油计量,因为这些场所的高含水油经过油气分离,流态比较稳.定,含水波动较小,计量精度能够保证;②被测介质的含水率:>80%;③工作压力:≤2.5MPa;.④被测介质温度:≤100℃;⑤传感器衬里:可根据被测介质的温度选择不同的衬里。高含水油的温度一般在50~70℃,选择耐油橡胶衬里可满足计量要求;⑥口径依据被测液量的满量程流量来选择。电磁流量计的流速下限为0.5m/s。一般流量测量以2m/s为经济流速,而在高含水油测量时,流体的流速要求偏高一些,一般3~4m/s,这样可以避免低流速时原油附着于测量管壁及电极上,保证正常计量。.为保证超声波流量计流量测量精度,选择测量点时要求选择流体流场均匀的部分,一般应遵循下列原则:1、被测管道内流体必须是满管。2、选择被测管道的材质应均匀质密,易于超声波传播,如垂直管段(流体由下向上)或水平管段(整个管路中最低处为好)。3、安装距离应选择上游大于10倍直管径,下游大于5倍直管径(注:不同仪器要求的距离会有所不同,具体距离以使用的仪器说明书为准)以内无任何阀门、弯头、变径等均匀的直管段,测量点应充分远离阀门、泵、高压电、变频器等干扰源。4、充分考虑管内结垢状况,尽量选择无结垢的管段进行测量。外夹式流量计传感器安装要点  时差式超声波传感器安装方式有三种,分别是V法、Z法和W法,如图3所示。  测量时采用何种安装方式,仪器说明书均有规定,但在边界范围一般比较模糊。如TFX1020P时差式超声波流量计:V型安装法适用测量管径25~400 ㎜,Z型安装法适用测量管径100~2540㎜,W型安装法适用测量管径65㎜以下小管。V型与Z型、V型与W型在适用测量管径均有部分重叠,如遇此情况 则按下列原则选择最佳安装方式:V型安装一般情况下是标准安装方式,使用方便,测量准确。当被测管道很粗或由于被测流体浊度高、管道内壁有衬里或结垢太 厚,造成V型安装信号弱,仪表不能正常工作时,选用Z型安装。原因是使用Z型安装时,超声波在管道中直接传输,没有折射,信号衰耗小。W型安装适于小管, 通过延长超声波传输距离的办法来提高小管测量精度,如图3(c),使用W型安装时,超声波束在管内折射三次,穿过流体四次。 流量传感器安装方式有两种,分别是对称安装和同侧安装。对称安装适用于中小管径(通常小于600㎜)管道和含悬浮颗粒或气泡较少的液体;同侧安装适用于各种管径的管道和含悬浮颗粒或气泡较多的液体。外夹式超声波流量计传感器安装要求1、剥净测量点处附近保温层和保护层,使用角磨砂轮机、锉、砂纸等工具将管道打磨至光亮平滑无蚀坑。要求:漆锈层磨净,凸出物修平,避免局部凹 陷,光泽均匀,手感光滑圆润。需要特别注意,打磨点要求与原管道有同样的弧度,切忌将安装点打磨成平面,用酒精或汽油等将此范围擦净,以利于传感器粘接。2、在水平管段上,两个传感器必须安装在管道轴面的水平方向上,并且在轴线水平位置±45°的范围内安装,以防止管内上部流体不满、有气泡或下部有沉淀等现象影响正常测量,如图5所示。3、传感器安装处和管壁反射处必须避开接口和焊缝,如图6所示。4、传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。电磁流量计是一种用来测量导电介质体积流量的仪表。为了确保电磁流量计测量的准确性以及工作的稳定性,需要定期对其做一次全面检查,接下来开流仪表来给大家说说检查的具体内容。1.零点检查  整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。2.连接电缆检查 该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3.转换器检查  该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整,设定值检查,励磁电流测量,电流/频率输出检查等。4.电磁流量计传感器检查  测量励磁线圈的电阻,测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度,以估算清洗附着层前后因流动面积变化引入的流量值变化。热式气体质量流量计是利用传热原理,即流动中的流体与热源(流体中加热的物质或测量管外加热体)之间热量交换关系来测量流量的仪表,目前主要用于测量气体。热式流量仪表用得最多有两类,一是利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计,曾称量热式TMF;另外--类是利用热消散(冷却)效应的金氏定律TMF又由于结构上检测元件伸入测量管内,也称插入型或侵入型。插入型的工作原理及流量计算如下:   如图所示,插入式热式气体质量流量计由两个电阻温度计组成传感器,一个测温探头,感受流体温度T2另一个电阻温度计由电路加热到温度T1用来测量流体带走的热量变化,亦称测速探头。T1高于T2。并保持△T恒定,即△T=T1-T2。当流体流经传感器时,由于测速探头的自身温度T1高于测温探头感受的温度即流体温度T2,流体便带走了测速探头上的一部分热量(高温向低温传递),使T1下降。电路为保持△T恒定,便增加对测速探头的加热功率,使△T=T1-T2恒定。流体带走测速探头.上多少热量,电路便增加相应数量的电功率,两者之间存在着一个函数关系"。设对测速探头的加热功率为P1,流体的质量流量为Q,则根据流体流过测速探头时所带走的热量与对测速探头的加热功率相对应的原理,得到下列关系式: 式(1)中,PocQ   因此,可以通过测量加热功率P,来测量带走这部分热量的流体的质量流量。由于带走着部分热量的是流体的分子,所以,测速探头直接测量的是流体的质量流速pv,此时,只要乘上管道的横截面积,就可以得到流体的质量流量了。由于气体流过探头时带走热量和气体的质量流量成比例关系,也和探头间温差有关,流量越大,两探头之间温差越小,气体质量流量与温差之间的联系通过质量流速ρv建立"。 式中:Qm-质量流量,kg/s; Kv-测量头仪表系数; a-速度分布系数; B一阻塞系数; x-干扰系数; A-仪表表体(测量管道)的内橫截面积,m² ρv一质量流速,kg/(m²·S)。   基于_上述原理,对于大管径的流量测量来说,虽无相应的大管径标定装置来对流量计进行标定,但只要在标准口径的标定装置.上测定相应的质量流速,也就可方便地测量出大管径中流体的质量流量了。   由热式气体质量流量计中于两个传感器都是用性能稳定的金属铂材料通过特殊工艺密封在316L不锈钢管或抗酸、碱腐蚀的K2760哈氏合金或铂套管中制成,因此极为坚固,并不会污染被测流体或受被测流体污染,且其抗腐蚀性能相当好。1.始动比较低,量程比较宽  为满足社会发展,超声波流量计的计量范围也越来越大,流速在0.05m/s~30m/s的范围内的流体都可以被精准测量,量程比达到1:700左右,可测范围也比较广,可满足气体、液体传输过程中对安全的需求,并且灵敏度也比较高,可测量很小的流量,保证计量不间断,可良好地满足峰谷用量差异大的场合。2.自带旋转整流器  超声波流量计中自带旋转整流器,因此,对超声流量计安装位置前后管道的要求比较低,解决了传统流量计不确定流场打乱的问题,可形成自己所需的流场,旋转整流器的使用,可促使前直管段从原先的20D缩短到5D之内,从而降低安装管段的长度,降低对空间的要求,影响精度可控制在1%以内。3.抗污染性能强  超声波流量计通常都应用在测量环境比较恶劣的场所,如果抗污染能力不足,必然会增加维修成本。随着科学技术的发展,超声流量计愈发先进可靠,无可动部件。而且具有很强的穿透性和自动清洗功能,即便长时间运行,粉尘、杂物、水汽等因素也不会影响测量的精度,维护量和维护成本都比较低。4.可实现智慧化管理  在超声波流量计内部可设置基于NB-IoT技术远传模块,利用局域网就可以实现测量数据的远程传输,为中心控制端提供现场诊断资讯,进行故障预处理和异常报警,提醒现场运维人员及时处理,进行实时监控,实现“少人值班或者无人值班”的智慧化管理。1.节能效果好  弯管流量计因其独特的测量原理,没有其他流量计必须具备的节流件或插入件,最大限度地减低了因计量检测器具带来的流体在管道内的压力损失,减少了加压设备的投入和加压设备的电能消耗。由于孔板流量计是利用对流体节流装置施行节.流产生的差压来测量流体流量,流体在孔板上存在压力损失,因此使用时为了保证孔板流量计的测量精度,在选定孔板流量计的工作压差时都取高压差值。通常情况下,该节流压力损失(称为不可恢复压力损失)可达孔板运行流量下产生压差值的30%~70% (与孔板的β值有关)。孔板流量计压力损失等损耗量用见表1。2.设备使用状况较好  冶金工业煤气中,含有大量的粉尘、水、焦油和萘,使很多流量测量计量设备不能正常工作。弯管流量计的特殊结构和导压管上的三通阀可在正常工作状态下清除传感器的堵塞附着物,实用便利,在现场试用4年来从未发生堵塞现象。3.弯管流量计结构简单  弯管流量计的弯管传感器,是一个90的标准弯管,内部没有任何节流件和插入件,是测量元件中最为简单实用的测量件。随着机械加工业的快速发展和高精度数控机床用于机械加工业,弯管流量传感器的加工精度不断提高,质量越来越好。 弯管流量计的直管段要求前5D,后2D,孔板流量计的直管段要求前10D,后5D。弯管流量计的重复性好,可达0.2%。4.弯管流量计适应性强,量程范围宽  弯管流量计在高溫、高压、冲击、振动、潮湿、粉尘等恶劣环境条件下,优于孔板流量计,震动和冲击对弯管流量传感器的正常工作几乎没有影响,高温、高压对弯管流量计来说只要采用与工艺管道相同的材质,就可以解决。  弯管流量传感器的几何尺寸几乎没有限制,管径的大小从几十毫米到2n以上,只要弯管的弯径比符合规定要求,都可以做为传感器进行流量测量。  弯管流量计的设计特点最适合在高温、高压状态下(高温蒸汽、高溫水)的流量计量,可降低能源损耗,降低压力损失,提高供热效率。弯管流量计的量程比可达10: 1,孔板流量计的量程比一般为35: 1.5.弯管流量传感器的耐磨性好  因弯管流量传感器的特殊结构,内部没有任何节流件和插入件,固弯管流量传感器几乎不存在磨损,是保证弯管流量计长期运行精度不变的重要条件。孔板流量计入口边缘尖锐度对磨损十分敏感,只要有微量的磨损,就会直接影响到测量精度,在气体的长期高度冲刷下,也会使孔板开孔直角入口的边缘很快钝化,使测量精度系统发生变化造成误差。6.弯管流量计安装方便,维护量小  弯管流量计具有良好的耐磨性,长期运行的稳定性和可在线进行清污等特点,可采用直接焊接的方法进行安装,避免了流量测量装置现场跑、冒、滴、漏,令人头痛的问题,降低了安装费用。  由于弯管流量计一次测量件长期运行无磨损件,大大降低了维护费用,几乎是免维护,一般可达到被测气体管道的使用寿命。  孔板流量计的插入件和节流件容易堵塞,附着脏物,影响测量准确性。为保证孔板流量计的测量精度,必须经常进行拆除检查清污,这样频繁的拆装、检查、清污维修,在连续作业的冶金企业难以做到,特别是对在较大管道上的孔板流量计就更难以做到,可见在工业煤气计量中具有多种不确定因素影响测量误差。7.弯管流量计不易冻管  孔板流量计的结构、工作原理达到的测量精度,节流件起到了决定性的作用。节流件对气体在管道的流动具有非常大的阻力,一般只能利用输气管道.截面的1/3,大量潮湿含水的气体在节流件截面上形成了大量的水珠,遇冷后结霜、结冻堵管。为解决煤气供应的冻管问题,必须给每套孔板加装保温伴.热装置,来保证新疆地区5个月的冬季运行。表2为孔板流量计运行费用。  弯管流量计由于特殊结构和安装的多样性(水平转水平,水平转垂直向下,垂直向下转水平,垂直直管,水平直管等安装方式,见图3),可以有效防止煤气计量中冻管的发生,节省热能源和运行费用。金属管浮子流量计与恒流阀组成的吹扫设备原理,如图1所示,以恒定人口压力为例:   弹性膜片受到向上的作用力为: P2A+P1a(1) 弹性膜片受到向下的作用力为: P3A+P2a+F(2) 在压力平衡状态时,即式(1)=式(2)时: P2A+P1a=P3A+P2a+F(3) 作为压力调节器膜片的压差P2-P3,我们可以得到: P2-P3=F/A-(a/A)(P1-P2)(4) 由于a<A,所以(a/A)(P1-P2)可以忽略不计,由于F和A都时恒定值,所以: C(恒定值)=P2-P3   当金属管浮子流量计测量介质是不可压缩的液体时,RE压力调节器可以适用于出口压力变化。对于式(4),由于P是恒 定的,P3是变化的,因此,P3变为:P3+△P,P2变为: P2+△P,所以: C(恒定值)=P2-P3德国VSEVS4流量计现货  由于孔板流量计有多个测量单元,影响其测量准确度的因素很多(如孔板的加工误差,安装误差、计量软件的计算误差等)。此外,在现有工况条件下,由于介质中的杂质对孔板有一定的冲击腐蚀作用,易造成差压变送器产生零点漂移,特别是当天然气处理效果不理想时,对计量的影响更大。因此,节流装置和差压变送器的使用维护是一个重点。应在下面的实际运行中加以注意:(1)当天然气处理效果不理想时,在孔板上游端面会沉积脏物。不仅会降低孔板的使用寿命,还会造成较大的计量偏差。(2)变送器导压管的作用是将孔板前后的压力信号引入差压,测量出差压值参.与流量计算,上下游导压管带液会使差压偏小(大),造成流量偏小(大)。在冬季,导压管冻堵现象较常见,如果流量值出现大的起伏,很可能是导压管带液或冻堵了。(3)孔板胶圈变形。由于孔板胶圈在清油的浸泡下容易变形(这种情况在夏季尤为突出),因此在.天然气处理装置停运的情况下,要注意检查胶圈变形的情况,-旦孔,板松动应立即更换,不然不仅会因胶圈泄漏造成较大的计量误差,还会出现孔板脱落难以取出.必须停产维修的局面。(4)当天然气处理不干净时,其中的粉尘、水化物等对孔板有很强的冲刷腐蚀作用,会在孔板表面形成麻点,使直角边变钝,因此,孔板应经常检查更换,否则准确度会降低。(5)差压变送器零点漂移除了与仪表本身的稳定性有关外,,导压.管带液也会造成很大的影响。由于孔板流量计的流量和差压值成开方关系,差压变送器的零点出现正负漂移会直接造成积算流量偏大或偏小。(6)流量计算机中一些关键参数输入不正确或更新不及时。比.如,孔板开孔直径是以平方的形式出现的,由于孔板开孔直径会随季节和运行时间发生变化,一-定要定期测量孔板的开孔直径,并在流量计算机中及时更新。  天然气组分变化不仅影响相对密度,还影响超压缩系数。对于没有在线色谱仪的计量系统,,在组分变化不大的情况下流量计算机中一般每周输入-周天然气组分的平均值,但在天然气组分变化很大的情况下,每天都要对天然气组分进行化验.更新。2提高天然气计量准确度的应对措施(1)定期清洗检查孔板。比如孔板流量计光洁度直角边锐利度、胶圈变形情况、孔板开孔直径等。在正常的生产情况下。每月清洗检查-次,在出现不正常的情况下,视情况加密检查次数。(2)对流量计前过滤器每两小时排污一次,每月清洗过滤器芯--次。(3)正确输入计量参数并及时更新.按时校验变送器零点。另外,在气量波动较大的情况下,及时调节差压变送器量程,使测量值尽量在量程的1/3-2/3之间,以保证测量准确度。在测量值超出变送器最大、最小量程范围时,要考虑更换合适孔径的孔板。电磁流量计在结构上由传感器和转换器组成,其中传感器部分是检测出感应电压信号,也即是流量信号,经过信号传输线送给转换器;转换器部分主要起到处理流量信号,转换成可供显示仪、记录仪、计算机等处理的标准电信号。其结构示意图如图4-1所示。  电磁流量计传感器通过两端法兰,将它与被测流体所在的管道连接,安装在测量管道上。它是电磁流量计流量测量部分,在设计过程中,它应满足如下作用:(1)能够将流量信号转换成电压信号;(2)通过对转换器合理的设计,使无可避免的干扰所带来的不利影响减少到最小程度,最大程度的提高流量信号的信噪比;(3)在选择材料方面,尽量能够满足工业现场的要求,包括工业环境和电气属性等等。  电磁流量计转换器不仅仅给电磁流量计提供励磁电流,而且能够接收传感器测量的感应电动势信号,将该信号滤波、放大并转换为标准的电流电压信号,以能够在显示仪表、控制仪表和计算机网络实现对流量的远距离调控、监测、计算。  电磁流量计原型样机由10种元件组成,表4-1罗列出原型样机的元件清单,给出元件的参数,在装配图中标注出每一个元件的编号与位置,如图4-2所示,并作出了测量管道的三视图。权函数求解系统基础设计主要对管道、电极、励磁线圈进行设计,因为这三个方面的选材与设计直接决定了电磁流量计测量系统的精确度,影响到权函数的实验求解结果,同时在对管道、电极和励磁线圈设计时,要和COMSOL Multiphysics仿真模型中三者的尺寸和位置相一致,以达到权函数实验求解验证仿真求解的目的。1.仪表安装不符合要求造成计量误差  旋进漩涡流量计的使用过程中,最关键的是要保障计量的精度,安装质量是影响计量准确性、运行可靠性的重要因素。在实际的安装过程中,现场的安装人员往往会存在安装的不规范行为,而这种情况会导致计量的准确性不足,比如,在安装现场,仪表前后管线存在缩径现象,过近的安装距离会导致最终的计量结果偏大,计量与实际的误差非常大。此外,在安装过程中,安装人员的专业素质偏低,在实际的安装过程中,缺乏安装全过程的质量控制、细节管理,同样会造成严重的计量偏差。2.被测气量不稳定造成计量误差  旋进漩涡流量计的计量介质性质相对特殊,如果在实际的计量过程中,被测气量难以保持稳定性,将会影响计量结果的准确性。旋进漩涡流量计的运行过程中,存在着较大的压力损失,当在单井计量的过程中,伴随着一定气流量的产生,由于在此情况下气源的气体量相对较小,一旦气压降低到特定的值时,旋进漩涡流量计就无法及时将气量准确计量出来。在一些特殊的情况下,气量会随着时间呈现出或大或小的变动,而这种不稳定的变动趋势使得计量的难度系数增大,当属于脉动流体时,在计量过程中一旦出现随机脉动压力,将会对流量计造成一定的冲击,进而导致计量的精度不足。3.管线振动造成仪表误差  当流量很小的情况下,旋进漩涡流量计的计量结果难以保障。在实际的计量过程中,常常会存在工艺管道的振动现象,一旦在流速较小的情况下,流量计的仪表难以保持正常的输出状态,计量精度大大降低。旋进漩涡流量计使用过程中最常见的问题就是计量误差,这种误差常常是由多种因素所造成的,管线振动是其中的一个关键因素,当管线出现异常情况时,压电传感器能够活动振荡变化所引起的各种参数变化,此时,必然伴随着信号的输出,也就难以保障计量结果的准确性。4.不干净的测量流体介质造成计量误差  随着旋进漩涡流量计计量工作的开展,在流量计内必然会伴随着大量油污等杂物的存在,有时甚至会存在腐蚀与损坏现象,而这些情况会导致在计量过程中出现酸化与压裂现象的概率进一步增大,导致计量值远低于实际值。旋进漩涡流量计的计量工作中,要保障介质的洁净性,否则,一旦介质中存在饱和水蒸汽,当遇到温度过低的情况时,将会伴随着水凝结现象的出现。在计量过程中,如果计量分离器存在气路跑油的情况,在管线内会形成大量的积液;如果介质内存在污油、砂粒等杂质,在计量的过程中,可能会出现漩涡发生体表面杂质的黏结现象,最终影响计量结果的准确性。智能电磁流量计的测量不受流体的密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。电磁流量计设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便。   智能电磁流量计在试运行过程中会产生的问题,一般是由于安装的问题或选型的问题引起的,而在正常运行期间发生的问题一般是由于工作条件变化或出现新干扰源等问题引起的。所以在正常运行期间的问题一般都可以归结为仪表抗干扰能力的问题。下面小编就简单分析一下智能电磁流量计输出晃动的原因及解决办法:一、智能电磁流量计输出晃动大体上可归纳为这几点:1、流动本身是波动或脉动的,实质上不是电磁流量计的故障,仅如实反映流动状况;2、管道末充满液体或液体中含有气泡;3、外界杂散电流等电、磁干扰;4、液体物性方面(如液体电导率不均匀或含有较多变颗粒/纤维的浆液等)的原因;5、电极材料与液体匹配不妥。二、电磁流量计检查程序:    智能电磁流量计输出晃动的流程:先按流程图考急作初步调查和判断,然后再逐项细致检查和试排除故障。流程所列检查顺序的先后原则是:1、可经观察或询问了解无须作较大操作的在前,即先易后难;2、按过去现场检修经验,出现频度较高而今后可以出现概率较高者在前;3、检查本身的先后要求。若经初步调查确认足后几项故障原因,亦可提前作细致检查。   检查智能电磁流量计管内液体是否冲满,如没有充满,那么传感器处于水平安装位置或垂直安装流动的位置应特别注意,改换到能完全冲满的位置,如垂直安装流动的位置。  电磁流量计供电电压问题是最主要的问题,也是此次仪表更换的最大困难。电磁流量计A是DC24V供电回路,两线制;电磁流量计B是AC220V供电,四线制。将B表安装在现场就意味现场要接一条AC220V的供电线,电缆设计之初肯定留有一定的余量(参照SH30822019石油化工仪表供电设计规范余量要求)。但是AC220V供电设备在现场并不是很多,想找到一根备用的AC220V电源线或许不是那么容易。   经现场核实电磁流量计A的安装位置附近并没有AC220V供电设备,距离太远的设备如果现场重新配管施工AC220V电缆线路,因涉及动火作业或者挖掘作业,在投用装置里面有很大的风险,而且工期太久。所以AC220V电源通过备用电缆的想法走不通。进一步现场核查发现,电磁流量计A非直拉电缆,中间有接线箱,接线箱内有多部仪表通过一根16P本安电缆接至中控室,该16P本安电缆有6P备用线,其余10P电缆所接仪表为电磁流量计A和3台液位开关、6台阀位回讯。现考虑通过这根16P的电缆中的1P走AC220V电源。接线箱到仪表端重新敷设一根临时电源线约15m,16P电缆到现场机柜间,将AC220V的1P备用线从端子柜通过一对端子排重新引出,加接电源线接至电源柜。该方案可行性分析如下: 1)16P本安电缆中液位开关信号、阀位回讯信号都是通断的开关信号,抗干扰能力强。电磁流量计B最大功率为75W,电流不大,且AC220V的电压波形好,比较稳定,对DC24V负载造成串扰的影响考虑可以接受。 2)AC220V电源信号走原本安电缆路径.是不符合规范的。综合客观实际要求,只能最大限度地满足规范又要考虑现实情况。根据HG-T20512-2014仪表配管配线设计规范中7.1.3(见表3)和7.1.5(见表4)要求,可以知道仪表信号电缆与电力电缆平行敷设最小间距都是50mm。此处是该次故障处理没办法克服只能容缺的地方。 3)机柜间电缆布线,因是在投用盘柜施工,同一柜子仪表在线的同时进行布线接线,施工安全尤为重要。考虑采取充足准备,提前加工,尽量减少盘柜内动作,由有经验的接线员接线,禁止携带对讲机进入机柜间等措施。确保机柜间电缆布线接线安全。 综合分析,该方案的可行性可以接受。德国VSEVS4流量计现货电磁流量计有着广泛应用,但是电磁流量计在使用过程中有很多因素会影响电磁流量计的测量结果不准确。结合实践经验,本文将导致电磁流量计产生故障的原因概括为:管内液体未充满、液体中含有固相、因材质与被测介质不匹配而引发的故障、因人为因素造成的故障等。1.管内液体未充满  管内液体未充满是导致电磁流量计产生误差的重要原因。导致管内液体未充满的原因有多种,比较常见的是背压不足或流量传感器安装位置不良,同时,管内液体未充满程度不同,其故障表现也有所不同,具体言之,若只有少量气体在水管管道中呈分层流或波状流,则故障现象表现为误差增加,即流量测量值与实际值不符;若流动状态呈现为气泡流或塞状流,除测量值与实际值不符外,还会因气相瞬间遮盖电表面而出现输出晃动等。因此,多种误差表现均指向管内液体未充满,在实践过程中,要正确辨别不同现象,理清其产生的实质原因。2.液体中含有固相  液体中含有固相,即:液体中含有粉状、颗粒或纤维等固体,液体中一旦含有固相便会导致多种故障产生:浆液噪声;电极表面玷污;导电沉积层或绝缘沉积层覆盖电极或衬里;衬里被磨损或被沉积物覆盖,流通截面积缩小等。3.因材质与被测介质不匹配而引发的故障  因材质与被测介质不匹配而引发故障的电磁流量计与介质接触的零部件有电与接地环,匹配失当除耐腐蚀问题外,主要是电表面效应。1、开启时指针不动产生的原因:介质中含有杂质,使转子卡住;系统工作压力太小,致使金属管浮子流量计不正常工作,.  解决办法:清除异物;增加磁过滤器,增加系统工作压力.2、指针冲顶不回复产生的原因:介质中含有杂质,使转子卡住;仪表选型不合适,选用仪表太小.  解决办法:清除异物,增加磁过滤器;3、指针波动太大产生的原因:不能准确读数,产生原因:系统工作压力不稳定;介质存在脉动流或双相流的现象;仪表进出口处的管径变化大而导致压力变化或压力损失增加.  解决办法:检查自身系统;消除脉动流与双相流.减少压力损失.4、指针不回零产生的原因:由于仪表的波动而使指针位移;由于仪表的上下撞击,而使测量管内的零件弯曲变形.  解决办法:旋松指针处的小螺丝将指针复原至未工作状态;建议送回维修或更换.5、金属管浮子流量计远传不准确产生原因:环境温度超出工作要求;变送器漂移.  解决办法:按要求使用;适当调节变送器中的电位器或调节螺丝以恢复正常.6、流体正常流动时无显示,总量计数器字数不增加:检查电源线、保险丝、功能选择开关和信号线有无断路或接触不良; 检查显示仪内部印刷版,接触件等有无接触不良;检查检测线圈;检查传感器内部故障,上述1-3项检查均确认正常或已排除故障,但仍存在故障现象,说明故障在传感器流通通道内部,可检查叶轮是否碰传感器内壁,有无异物卡住,轴和轴承有无杂物卡住或断裂现象 .  解决办法:用欧姆表排查故障点;印刷板故障检查可采用替换“备用版”法,换下故障板再作细致检查;做好检测线圈在传感器表体上位置标记,旋下检测头,用铁片在检测头下快速移动,若计数器字数不增加,则应检查线圈有无断线和焊点脱焊;去除异物,并清洗或更换损坏零件,复原后气吹或手拨动叶轮,应无摩擦声,更换轴承等零件后应重新校验,求得新的仪表系数.7、 未作减小流量操作,但流量显示却逐渐下降:过滤器是否堵塞,若过滤器压差增大,说明杂物已堵塞;流量传感器管段上的阀门出现阀芯松动,阀门开度自动减少;传感器叶轮受杂物阻碍或轴承间隙进入异物,阻力增加而减速减慢.  解决办法:消除过滤器;从阀门手轮是否调节有效判断,确认后再修理或更换 ;卸下传感器清除,必要时重新校验.8、 流体不流动,流量显示不为零,或显示值不稳:传输线屏蔽接地不良,外界干扰信号混入显示仪输入端;管道振动,叶轮随之抖动,产生误信号; 截止阀关闭不严泄露所致,实际上仪表显示泄漏量;显示仪内部线路板之间或电子元件变质损坏,产生的干扰 .  解决办法:检查屏蔽层,显示仪端子是否良好接地;加固管线,或在传感器前后加装支架防止振动; 检修或更换阀;采取“短路法”或逐项逐个检查,判断干扰源,查出故障点.9、金属管浮子流量计示值与经验评估值差异显著:传感器流通通道内部故障如受流体腐蚀,磨损严重,杂物阻碍使叶轮旋转失常,仪表系数变化叶片受腐蚀或冲击,顶端变形,影响正常切割磁力线,检测线圈输出信号失常,仪表系数变化:流体温度过高或过低,轴与轴承膨胀或收缩,间隙变化过大导致叶轮旋转失常,仪表系数变化.传感器背压不足,出现气穴,影响叶轮旋转管道流动方面的原因,如未装止回阀出现逆向流动旁通阀未关严,有泄漏传感器上游出现较大流速分布畸变:(如因上游阀未全开引起的)或出现脉动液体受温度引起的粘度变化较大等;显示仪内部故障;检测器中永磁材料元件时效失磁,磁性减弱到一定程度也会影响测量值;传感器流过的实际流量已超出该传感器规定的流量范围.  解决办法:查出故障原因,针对具体原因寻找对策;更换失磁元件;更换合适的传感器.1.流量测量  现阶段,涡轮流量计对脉动流的直接测量还存在很大困难,但可通过误差方程分析、实验室试验和专业的脉动流量误差检测设备检测分析某一特定脉动流的测量误差。前两种方法基于脉动流的振幅和频率的可测量性,振幅和频率的测量可通过激光多普勒技术、热线风速仪法等。专业的脉动流量误差检测设备已有设备制造厂家在生产。1.1误差方程分析  通过对机翼理论的研究,可列出涉及惯量、夹角、叶轮半径、角速度等参数的误差运动方程,通过编程可求得针对某一特定涡轮流量计的不同振幅和频率脉动流的测量误差。依据动量守恒定律,可列出包含流速、切线速度等参数的非线性微分方程,通过计算和分析可理论推导测量误差。1.2实验室试验  现场实测脉动流的特性,采用已知标准体积压缩空气,在实验室模拟脉动流,将测量值与标准体积进行对比,分析测量误差。1.3误差检测设备检测  上海某公司生产的一种燃气脉动流误差检测设备,可较精确地测得脉动误差值,但暂未在山西省广泛应用。在绝大多数燃气公司的实际运行管理过程中,脉动流的特性参数无法在日常运行监测数据中获取,因此,主要定性地说明脉动流对涡轮流量计计量偏差的影响。2.测量误差  已有很多学者针对脉动流对计量的影响进行了研究。分析结果可知,由于叶轮受流体加速影响小,受流体减速影响大,计量始终存在正供销差。此外,正供销差取决于脉动流的振幅和频率,整体来说,如果脉动流频率大于叶轮角频率时正供销差值较大,脉动振幅增大时正供销差值也随之增大。3.脉动流对计量结果影响  A分输站涡轮流量计距离上游最近的压缩站(往复式压缩机增压)不到7km,且该分输站工艺布置紧凑。据实地测量,流量计上游直管段长度约为6Dn(Dn为涡轮流量计口径,mm),下游直管段长度约为4Dn。此外,7km管道沿线地势高低不平,加之煤层气气质水含量较大,导致在低洼处极易形成积液,积液也会造成脉动流。  2020年8—10月期间,下游公司发现正供销差持续增大时,对A分输站和B分输站的涡轮流量计进行了标定,但标定结果均为合格。随后下游公司在2020年11月5—7日对A至B分输站段管线进行了清管作业,共清出污水杂质约23t,清管完成后正供销差明显减小。清管前后实际供销差数据如表6所示。  除此之外,通过日常对气体涡轮流量计的运行监测,供气瞬时流量每次显示数据都在变化,且在一定时间内在1个值上下频繁波动(波动幅度约为依20%)。综合上述情况,该输气管道存在脉动流的可能性很大。脉动流会造成正供销差影响,对下游接气单位不利,因此有必要对脉动流的影响进行修正。1.从经济方面考虑购置流量计的费用  购置流量计时应比较不同类型流量计对整个测量系统经济的影响.例如,范围度小的流量计比范围度宽的流量计在相同测量范围下,需要多台流量计并联和多条管线才能覆盖,因此除流量计外还需增加许多辅助设备(如阀门、管线附件等).虽然表面上看流量计费用少了,但是其他费用则增加了,两者加起来也许并不合算.例如,安装孔板流量计加上差压计的费用相对便宜,但组成测量回路包括孔板的固定附件等其他费用,可能超过基本件费用很多.2.安装费用  在购置流量计时,不仅要考虑流量计的购置费,还需考虑其他费用,如附件购置费、安装调试费、维护和定期检测费、 运行费和备用件费.例如,许多流量计使用时应配备比较长的上游直管段以保证其测量性能.因此,正确的安装需要额外布置管道或备有旁路管道作定期维护.所以安装费应多方面考虑,例如,还应包括运行所需的截止阀、过滤器等辅助费用等.3.运行费用  流量计运行费用主要是工作时能量消耗,包括电动仪表内部电力消耗或气动仪表的气源耗能以及在测量过程中推动流体通过仪表所消耗的能量,亦即克服仪表因测量产生压力损失的泵送能耗费等.比如差压式流量计产生的差压,很大一部分不可恢复; 容积式流量计和涡轮流量计也具有相当阻力.只有全通道、无阻碍的电磁流量计和超声流量计此费用基本为零.插入式流量计由于用于大管径阻塞比小,其压力损失亦可忽略.据测算,管径为lOOmm的差压式孔板流量计1年泵送能耗费与流量计购置费相当, 如果换用电磁流量计,其购置费仅相当于4年多差压式孔板流量计的能耗费.可想而知,管径越大,泵送能耗费占总费用的比例越高.一般认为超过5000mm的流量计应尽可能选用低压损和无压损的流量计.例如,供水工程通常采用低压损的文丘里管等差压式传统流量计,而极少用孔板,现在则更新为电磁流量计和超声流量计.4.检测费用  检测费用应根据流量计的检定周期决定.一般用于贸易结算的原油或成品油的检测,常在现场设置标准体积管对流量计进行在线检定.5.维护费用和备用件费用等  维护费用为流量计投入使用后保持测量系统正常工作所需费用,主要包括维护费和备用件费.有运动部件的流量计需进行较多维护工作,如定期调换易磨损轴承、轴、转轮、传动齿轮等;没有运动部件的流量计也需进行检视,如最普通的用几何测量法检查差压式流量计.备用件费用会随着流量计性能提高的程度而增加.选用流量计时应考虑同时增加备用件的购置费用,尤其是从国外进口的流量计,有时常会因易损备件的购置问题而替换整台流量计.

您如果需要德国VSEVS4流量计现货的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网