欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAP0.2流量计选型样本

发布时间: 热度:
德国VSEAP0.2流量计选型样本同时我们还经营:1.一次测量元件引起的误差 孔板流量计中的节流元件是尖锐的直角边缘,流体在节流元件的入口收缩,根据伯努力方程,流速增加,压力减小...

德国VSEAP0.2流量计选型样本同时我们还经营:1.一次测量元件引起的误差  孔板流量计中的节流元件是尖锐的直角边缘,流体在节流元件的入口收缩,根据伯努力方程,流速增加,压力减小,孔板的测量原理就是根据孔板入口和出口的压差进行测量的。孔板平钝后流出系数增大,产生测量误差。流出系数对蒸汽流量测量的影响是普遍存在的。  测量管也是节流装置的组成部分,其结构尺寸对流体流动状态有重要的影响,测量管除满足前10D后5D的要求外,还对内表面的光滑度有要求。粗糙管的流速分布与光滑管是有区别的,流出系数也不相同,管道结垢、腐蚀,流出系数发生变化,产生测量误差。  对于孔板入口边缘磨损的问题,我们可以选用标准喷嘴,由于喷嘴入口是一个光滑的曲面,它的抗磨损,抗积污,抗变形程度远好于孔板,流出系数稳定性也比孔板好,压力损失也比孔板小得多,而且它的检定周期为4年,大大减少了维护费用。  对于测量管的问题,在管道安装时就尽量选用光滑度高,质量好的管道,必要时请专业厂家定制测量管道、连接法兰,冷凝器等,补偿用的温度和压力测量点也可以统一开工获取。虽说一次性投资高些,但由于投入使用后没有特别原因,一般不进行更换,还是使用周期越长越好,这样综.合经济效益还是高些。2.测量信号的传递失真  测量信号传递是孔板前后的差压信号经导压管传递到差压变送器,由于结构的不同,孔板流量计不同于涡街流量计那样直接装在管道上,它需要进行信号传递。对于蒸汽流量测量而言,传递部分可由阀门,导压管,冷凝器等部件组成。对于信号传递部件来讲,应保证传递信号不失真。实际使用中的大部分故障,往往是信号传递失真引起的。差压信号产生的传递失真比作为补偿用的温度和压力信号失真影响更大,必须引起注意。冷凝器在信号传递中处于关键位置,冷凝器中的液面保持一定高度,多余的冷凝液要回流到蒸汽管道,既要保证冷凝器中蒸汽很好地冷凝,又要使冷凝液回流畅通无阻。  气相导压管的一次根部阀门应保证蒸汽气相进入冷凝器,冷凝器里面多余的冷凝液回流到蒸汽管道,否则两只冷凝器液面不能保持相平,会对差压信号产生附加误差。一次根部阀门尽量选用闸阀,保证压力信号传递通畅无阻,减少测量误差。  测量用的导压管要加保温伴热,否则冬季不能正常工作。不管采用电伴热还是蒸汽伴热,一定要保证两只导压管受热均等,不然会因导压管中的液体的密度不同而产生附加差压误差。  作为压力补偿用的变送器一般和压力取压口不在同一高度上,如果变送器比取压口低,所测出的压力为管道中蒸汽的压力加上导压管中冷凝液产生的压力,可在变送器中进行正迁移将这部分压力迁移掉。使变送器测出的压力为管道中实际蒸汽压力。3.蒸汽密度问题产生的误差  测量蒸汽质量流量时要根据蒸汽的密度进行计算,因蒸汽的密度计算不准确产生测量误差。蒸汽流量测量仪表中涡街流量计是用工艺车间提供的蒸汽密度值为参考值,不是实际的密度值,得出的蒸汽流量会和实际流量有误差。选用涡街流量计时,最好选用能进行温度和压力补偿的型号,并且安装测温和测压元件取得温度和压力数值。孔板式流量计测出的流量由DCS系统显示,没有进行温度压力补偿。为了提高测量的准确度,必须进行温度压力补偿。对于孔板流量计,取得差压信号的同时,还需测得温度和压力信号,通过DCS中的专用软件进行温度和压力补偿。4.相关系数的影响  流出系数C和可膨胀系数ε在一定范围内可看作常数,但是,当蒸汽的状况偏离设计状态时,其流出系数C和可膨胀系数ε就会发生变化,就不能视为常数。测量小流量时,随着雷诺数变小,流出系数C将产生较大的变化。测量高压时,则必须考虑气体的可膨胀系数ε的影响,如果我们只补偿密度变化的影响,即使实现了对密度的完全补偿,其它各参数变化累加后的最大误差仍达6%左右,其中,可膨胀系数ε引入的误差最大。所以,要想提高仪表的测量精度,除补偿密度外还应考虑整个补偿方程中其它参数变化的补偿问题。DCS中的蒸汽测量模块中,不仅有密度补偿方式,还有流出系数C和可膨胀系数ε的修正办法,只要我们选用合适的流量测量模块,就能提高蒸汽流量的测量准确度。  一般认为,蒸汽干度X较高(X≥95%)时流体可视为单相流体。温度压力补偿可按通常方法进行。但出现-定误差。干度越低密度越大。在蒸汽干度较低(X<95%)时,管道中的流体处于二相流状态。情况严重时,流体分层流动,产生误差更大。目前还没有在线的干度测量仪表测量蒸汽的干度,最好的办法就是加强蒸汽传输管道的保温,提高蒸汽的过热度,使蒸汽的干度较高,孔板流量计测量也比较准确。超声波液位计基本要求  超声波液位计换能器发射脉冲超声波时,都有一定的发射开角。从换能器下沿到被测介质表面之间,由发射是超声波波束所辐射的区域内,尽可能有障碍物,因此安装时应尽可能避开罐内设施,如:人梯、限位开关、加热设备、支架等。如果有障碍物干扰情况下,安装时需要进行"虚假回波存储"。另外须注意超声波波束不得与加料料流相交。  安装仪表时还要注意:最高料位不得进入测量盲区;仪表距罐壁必须保持一定的距离;仪表的安装尽可能使换能器的发射方向与液面垂直。安装在防爆区域内的仪表必须遵守国家防爆危险区的安装规定。本安型的外壳采用铝壳。本安型仪表可安装在有防爆要求的场合,仪表必须接地。测量的基准是探头的下边沿。1、盲区 2、空仓(最大测量距离) 3、 最大量程 4、测量范围注:使用超声波物位计时,务必保证最高料位不能进入测量盲区。安装位置  在安装超声波物位计的时候,注意仪表和容器壁至少保持200mm的距离。1、基准面2、容器中央或对称轴  对于锥形容器,且为平面罐顶,仪表的最佳安装位置是容器顶部中央,这样可以保证测量到容器底部。常见安装位置的正误1、错误:换能器应与被测介质表面垂直。2、错误:仪表被安装在拱形或圆形罐顶,会造成多次反射回波,在安装时应尽可能避免安装在容器中央。3、正确1、错误:不要将仪表安装于入料料流的上方,以保证测量的是介质表面而不是入料料流。2、正确 注意:室外安装时应采取遮阳、防雨措施。搅拌  当罐中有搅拌时,超声波液位计安装尽量远离搅拌器。安装后要在搅拌状态下进行"虚假回波存储",以消除搅拌叶片所产生的虚假回波影响。若由于搅拌产生泡沫或翻起波浪,则应使用导波管安装方式。泡沫  由于入料、搅拌或容器内其他过程处理,会在某些液体介质表面形成泡沫,衰减发射信号。如果泡沫造成测量误差,应将传感器安装在导波管内,或使用雷达液位计。导波雷达液位计的测量不受泡沫的影响,是这种应用的最佳选择。气流  如果容器内有很强的气流,例如:室外安装,而且风很大,或容器内有空气涡流,您应该将传感器安装在导波管内,或使用雷达液位计或导波雷达液位计。如何解决电磁流量计无输出信号或输出值有偏差第一如果管道内测量介质不满管电磁流量计就无法正常工作.因为在介质不满管的情况下电磁流量计会产“生最为常见的应用程序故障,产生这种现象可能是由于营道中介质流速非常低造成不满管流量计测量误差增大或者介质未能满过电极从而流量计根本无法进行工作.需通过工艺调整必须保证管道内测量介质充满才能使用电磁流量计进行测量.第二测量介质中含有大量空气和气体也会造成电磁流量计无法正常工作。这些气泡的存在造成流量计无法准确辨别干扰了其准确的测量。第三电磁流量计不能用于持续时间较短的配料操作,这是由于电磁流量计无法正常反复启动和停止,它的启动到正确读数之间存在一个时间滞后问题。第四电磁流量计本身不能计量质量流量.电磁流量计是一种速度式流量计测量的是体积流量若要测量质量流量必须配合高精度的密度测量装置来进行换算。日常工作中如果正确保养涡街流量计,可以有效延长其使用寿命,并减少故障发生,具体方法如下:1)涡街流量计由于K系数的确定在涡街的整个环节中非常重耍,K系数的准确与否直接影响着回路的准确度,仪表更换零部件以及工艺管道的磨损等情况,均可能影响K系数.而很多化工厂又缺少标定的手段与能力,只能送出标定,受工艺运行的影响,要从管道上拆下涡街送出要5、6天的标定时间,工艺方面很难满足,从而无法确定K系数。今年,通过流量仪表间的改造,虽已经具备了较小口径的涡街标定条件,但对于较大口径的涡街仍然无能为力,以后应注意使用涡街的现场标定方法,孔板流量计使用标准频率以及便携式超声波流量计,测出管道中的瞬时流量以及传感器的脉冲输出频率,现场计算K系数。2)涡街流量计应定期清洗涡街流量计的探头,检查中曾发现,个别探头检测孔已被污物堵塞,甚至被塑料布裹住,影响了正常测量。3)涡街流量计定期检查接地和屏蔽情况,消除外界干扰。有时候指示问题是由于受到干扰所至4)涡街流量计安装环境潮湿的探头.应定期烘干一次,或作防潮处理。由于探头本身并末作防潮处理,受潮之后影响运行。5)涡街流量计的数据资料的管理应引起足够的重视,孔板流量计以利于日后的工作。1.涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力等仪表不能正常工作或不能准确测量。2.振动也是该类仪表的一大劲敌。因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜选用的。即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。3.介质温度对涡街流量计的使用性能也有很大的影响。如压力应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。涡街流量计是一种比较新型的流量计,处于发展阶段,还不很成熟,如果选择不当,性能也不能很好发挥。只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。  涡街流量计与流体密度无关,在测流量时,考虑气体或蒸汽温度、压力变化对密度的影响,需不需要进行密度、温度压力补偿,从以下几个方面进行探讨。(1)测量介质为液体,且流量以质量流量表示。由于测液体流量时,流量指示一般为质量或重量流量,漩涡流量计由漩涡频率-流速-体流量X密度=质量流量,当指示值以质量流量表示时,刻度系数中包含密度的因素,所以密度变化对指示值有影响,必须进行密度修正。(2)测量介质为气体,且以标准状态下体积表.示。  气体流量一般习惯均以标准状态下体积表示,刻度为Nm³/h,但工作时由漩涡频率→流速→工作状态体积再折算成标准状态下体积。作为一台漩涡流量计,一旦折算系数确定了,那么流体只有处在一个工作压力、温度下流量指示值才准确,这个温度就是设计温度,这个压力就是设计压力。一旦工作条件偏离了设计值也会带来误差,所以必须考虑温度、压力补偿,但不考虑密度补偿。(3)测量介质为气体,且以质量流量表示。  对漩涡流量计,由漩涡频率→疏速→工作状态体积流量→设计状态体积流量→标准状态体积流量,再乘以标准状态下气体的密度而得到质量流量。  显然,以质量流量表示的漩涡流量计,必须进行气体组成变化带来的密度变化的修正,同时工况变化,又增加一个由工作状态折算到设计状态的折算系数。这个折算系数是动态的,也就是温度、压力补偿问题。经过以上分析得出以下结论:(1)无论测气体或液体,若涡街流量计流量以工作状态体积流量表示时,没有密度及温度、压力补偿问题。(2)无论测气体、蒸汽或液体流量,以质量流量表示时,液体一般温度变化范围大,流体密度变化均需进行密度修正,对气体过热蒸汽还需进行温度、压力补偿。(3)以标准体积流量表示时,流量计必须进行温度、压力补偿,无需进行气体密度补偿。德国VSEAP0.2流量计选型样本计量管路流量量程变化是实际使用中经常遇到的情况, 特别是直接对没有储气设备用户供气的计量更是如此。我国天然气、煤气的大部分消耗是供给城市作民用燃气的,一般日负荷的变化都比较大,流量的量程变化也就较大。常用孔板流量计的量程比一般为3:1,对于大量程比的场合,一般采用以下三种方法解决。(1)将大流量分段多路并联组合进行测量.在流量量程变化较大的场合,往往采用不同管径的计算管道并联组合,通过计量管路的组合切换来适应流量的变化;这是目前较为常用的方法。(2)更换孔板片改变值进行测量.在不改变标准孔板节流装置和差压计的情况下,通过更换不同开孔直径的孔板,改变孔径比的方法来实现流量测量。适用于较长时间的季节性流量较大幅度改变或供气量的突然变化致使差压计超出规定使用范围的情况。(3)用一台孔板流量计并联不同量程差压计进行测量.采用同一台孔板流量计的一次装置,并联两台或两台以上不同量程的差压计进行切换测量。1.从经济方面考虑购置流量计的费用  购置流量计时应比较不同类型流量计对整个测量系统经济的影响.例如,范围度小的流量计比范围度宽的流量计在相同测量范围下,需要多台流量计并联和多条管线才能覆盖,因此除流量计外还需增加许多辅助设备(如阀门、管线附件等).虽然表面上看流量计费用少了,但是其他费用则增加了,两者加起来也许并不合算.例如,安装孔板流量计加上差压计的费用相对便宜,但组成测量回路包括孔板的固定附件等其他费用,可能超过基本件费用很多.2.安装费用  在购置流量计时,不仅要考虑流量计的购置费,还需考虑其他费用,如附件购置费、安装调试费、维护和定期检测费、 运行费和备用件费.例如,许多流量计使用时应配备比较长的上游直管段以保证其测量性能.因此,正确的安装需要额外布置管道或备有旁路管道作定期维护.所以安装费应多方面考虑,例如,还应包括运行所需的截止阀、过滤器等辅助费用等.3.运行费用  流量计运行费用主要是工作时能量消耗,包括电动仪表内部电力消耗或气动仪表的气源耗能以及在测量过程中推动流体通过仪表所消耗的能量,亦即克服仪表因测量产生压力损失的泵送能耗费等.比如差压式流量计产生的差压,很大一部分不可恢复; 容积式流量计和涡轮流量计也具有相当阻力.只有全通道、无阻碍的电磁流量计和超声流量计此费用基本为零.插入式流量计由于用于大管径阻塞比小,其压力损失亦可忽略.据测算,管径为lOOmm的差压式孔板流量计1年泵送能耗费与流量计购置费相当, 如果换用电磁流量计,其购置费仅相当于4年多差压式孔板流量计的能耗费.可想而知,管径越大,泵送能耗费占总费用的比例越高.一般认为超过5000mm的流量计应尽可能选用低压损和无压损的流量计.例如,供水工程通常采用低压损的文丘里管等差压式传统流量计,而极少用孔板,现在则更新为电磁流量计和超声流量计.4.检测费用  检测费用应根据流量计的检定周期决定.一般用于贸易结算的原油或成品油的检测,常在现场设置标准体积管对流量计进行在线检定.5.维护费用和备用件费用等  维护费用为流量计投入使用后保持测量系统正常工作所需费用,主要包括维护费和备用件费.有运动部件的流量计需进行较多维护工作,如定期调换易磨损轴承、轴、转轮、传动齿轮等;没有运动部件的流量计也需进行检视,如最普通的用几何测量法检查差压式流量计.备用件费用会随着流量计性能提高的程度而增加.选用流量计时应考虑同时增加备用件的购置费用,尤其是从国外进口的流量计,有时常会因易损备件的购置问题而替换整台流量计.1.煤浆的磨损大,所以电磁流量计采用耐磨的ETFE衬里”的观点不准确,ETFE主要解决了与金属的附着问题。虽然ETFE的原料便宜,但其目前的处理工艺复杂,用它来制作衬里,成本比PFA还高,且没有表征ETFE的.耐磨性优于PTFE的佐证。2.采用低噪声电极,所以波动小”的观点不准确。电极的形状的确与噪声大小相关。由于原进口流量计的电极在某煤化I企业有结垢现象,经常需要把流量计拆下来用晶相砂纸打磨电极,而上海威尔泰采用自清洁电极(即尖状电极),有效地解决了结垢问题。实际应用表明,虽然采用自清洁电极流量计的平稳性比采用球面电极的平稳性稍差,但也没有出现过异常波动。所以,我们认为,在解决煤桨流量输出异常波动方面,低噪声电极并非关键技术。3.原进口流量计安装要求低,‘前5D后2D'就行”的观点不准确。在实验室标定时,要求直管段比较长(达到10D);在应用中,-般“前5D后3D”就足够了,这并非仅仅适用于进口流量计。如果缩径,直管段要求还可以进一步减小。另外,现阶段的煤浆流量计,基本没有投闭环控制的,对于精度的要求不是很高,关键是保证安全连锁处于有效状态,以避免异常波动引起误跳车。4.原进口流量计流速大小对流量的影响很小,适用0.3m/s的流速"的观点不准确。这种说法有很大的误导作用。实际应用经验表明,当流速较低时,尤其是当流速低于0.5m/s时,煤浆流量计容易波动。因此,这种观点不准确。5.单纯缩径"的观点不准确。我们曾经把管道缩径,安装较小口径的流量计,实际使用效果却不如采用本文所提的方案。一方面,由于涉及管道改造、高压法兰以及压力容器级别的焊接,综合成本也不低;另一方面在管道上缩径,小口径长度会远大于在电磁流量计上缩径,导致压损增大,再加.上转换器未替换,很多结果不可预知。6.原进口流量计因为业绩多,所以风险小”的观点不准确。业绩多和业绩好是两个概念,二者没有因果联系。由于历史的原因,原进口流量计市场占有率比较高,好的业绩虽然多,但差的业绩也有。一旦波动引起误跳车,损失是很大的。据不完全统计,因为煤浆流量计波动引起误跳车,200000t甲醇生产线一次损失约为300000元;600000t甲醇生产线,误跳车一次的损失约为800000元。这也是质量好的煤浆流量计价格居高不下的原因之一。我们曾经使用两种品牌的进口流量计,八个月就坏的情况也出现过,-年坏三套的情况也发生过。实际应用中,磁翻板液位计如果出现消磁现象,就不能正常使用。那么,消磁原因是什么?如果磁翻板液位计出现消磁现象应如何处理呢?一、磁翻板液位计消磁的原因:  侧装式磁翻板液位计的磁浮子在使用过程中磁浮子会有消磁现象,从而导致磁翻板液位计失效。一般来讲,造成磁翻板液位计消磁的原因,主要有以下几点1、硬磁材料的剩磁小于耦合临界值。随着时间变化,受自身因素的影响随着时间的推移,硬磁材料的剩磁会出现小于耦合临界值的现象。 2、高性能硬磁材料有氢脆现象。 3、使用温度高于硬磁材料的居里温度。二、磁翻板液位计消磁的处理:   针对导致磁翻板液位计消磁的原因,通常需要做到以下几点,以应对磁翻板液位计的消磁现象。1、从设计方面看,要选用恰当的硬磁材料。比如在选用磁性材料时,应选用居里温度高于使用温度20%以上、能够保证五年后剩磁超过临界值的磁性材料。2、从生产方面看,加工磁浮子时应注意:a.在磁浮子内填充惰性气体(如氩气)。 b.在产品生产加工阶段,焊接(氩弧焊)时应注意采取降温措施,以避免磁浮子的磁性材料处的温度超过磁性材料的居里温度。3、从使用方面看,用户要做到以下几点: a.在订货时,选用恰当的型号,达到使用温度不超过磁翻板液位计的标称温度; b.在使用中,应对侧装式磁翻板液位计的使用情况(能否正常工作)进行随时观察,并注意记录介质的实际温度。德国VSEAP0.2流量计选型样本1.正确地安装   正确安装涡街流量计传感器是确保测量精确可靠的首要前提,若在安装地点和方式选择.上失误轻者影响测量精度重者会影响传感器的使用寿命甚至损坏传感器。 ①保证适当的直管段   安装传感器时,一般要求上游直管段长度15-40DN下游段长度5DN,可根据上下游管道的情况适当调整以保证测量精度。传感器也应避免在架空的非常长的管道上安装传感器这样时间一长后,由于传感器的下垂容易使传感器与法兰间的密封泄漏,若不得已要安装时必须在传感器的上下游2D处分别设置管道支架等紧固装置。 ②避免较强的振动   传感器应避免安装在振动较强的管道上,若不得已要安装时,必须采用减振措施,在传感器的上下游2D处分别设置管道紧固装置并加防震垫。在空压机出口处振动较强不能安装传感器应安装在储气罐之后。 ③根据测量流体选择合适的安装方式   在对高压风测量时,可以选择将涡街流量计传感器安装于水平管道或垂直管道.上但如果高压风中水份含量较高,水平安装时传感器应安装在管线的较高处,垂直安装时气体流向应由下向.上。无论水平或垂直安装流体流向必须与传感器表体.上的流向箭头保持一致。④对外部环境的要求   传感器避免安装在温度变化很大的场所和设备的热辐射范围内若必须安装应有隔热通风措施。在潮湿、含有腐蚀性气体的环境中安装时必须做好防潮及隔离措施。外因为电噪声会干扰传感器的正确测量,因此安装位置要远离大功率变压器、电机等干扰设备。 2.正确设定参数   流量积算仪具有良好的全中文界面,以方便用户操作。正确进行参数设定是保证计量精度的前提。测量介质选择空气,因为对高压风的体积流量计量不需要压力温度补偿,因此测量信号设置为工作状态下的体积流量输入信号选择频率瞬时流量的单位默认为m³/h不需要用户设定。1、复核电磁流量计转换器设定值和检查零点、满度值  检合流程图第1项。首先检查相配套传感器和转换器的编号是否对号。当代大部分电磁流量计在制造厂实流校准后在传感器*(或/和随表附《使用说明书》,标明校准的仪表常数,并在所配套的转换器内设定好。因此新安装内仪表调试前首先要复核仪表常数,或者传感器编号和转换器编号是否配对。因为这类失配的事件经常发生,还需复核口径、量程和计量单位等设定值。用模拟信号器)通常要按所用电磁流量计型号向制造厂订购)检查转换器零点和量程。2、查管道充液状况和含有气泡  检任流程图第2项。本类故障主要是管网工程设计不良或相关设备不完善所引起的,可参阅第9页第四节中"2、管道未充满液体或液体小有含有气泡"一节。

您如果需要德国VSEAP0.2流量计选型样本的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网