德国VSEAP1流量计定做同时我们还经营:1.只要满足流量计的使用条件(包括.流体的流动特性.介质特性.操作过程及流量范围)与检定时相一致,便会得到与流量计检定精度等量的使用精度。这就要求流量计的使用与检定的流体的流动特性(流量计进口的速度分布)相同;流体的物理性质(密度等)也相同;检定过程相同,并且在流量计的检定流量范围内使用仪表常数,那么在对介质密度压力修正后。其使用精度便等同于其检定精度。2.若流量计的使用与检定条件满足上述相同性原则,并且流量计在检定流量范围内定点使用时(使用其检定流量下的仪表系数的平均值).则流量计的使用精度将会大大优于其检定精度。3.若流量计在检定该范围内实际使用时,可用特性方程。即依据检定中得到的各个流量下的平均仪表系数与流量Q的对应关系,借助最小二乘法原理,直线拟合得到K1=aq+b,用拟合后的K1代替仪表常数k,也可提高流量计的使用精度。涡街流量计由壳体、漩涡发生体和放大器组成.一种典型的结构如图4所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号. 涡街流量计是一种无运动部件的流量计,按其原理分类属于振荡型流量计.同属于这类流量计还有漩涡进动型流量计;振荡射流型流量计.由于涡街流量计不含有运动部件及对流体冲刷敏感的部件,因而在使用过程中,可靠性高,使用寿命长,并具有一般节流式流量计的优点,精确度稳定,再现性好.在大批量生产和工艺稳定的条件下,可以采用“干校验法”,即不必逐台仪表进行实液标定,可根据结构尺寸直接确定仪表常数及仪表精度.涡街流量计是‘种数字式流量计,它输出的脉冲信号的频率与流量成线性关系,同时具有量程宽、重复性好.便于远距离无精度损失的传输.此外仪表常数及精度不受介质的压力、温度、密度等变量的影响.一旦涡街流量计的结构确定.流体振荡就服从的客观规律,其振荡频率不能人为地改变,因而仪表常数及其变化规律是客观的.1.测量液体 孔板流量计测量液体流量时工艺管道水平安装,差压变送器的位置处于节流装置下方时,取压口应在节流装置的水平中心轴线下偏 45°角引出,这可以消样除由流体传放出的气体进入导压管和差压变送器(如图8).若差压变送器处于节流装置的上方时,除取压口下偏≤45°角 然后向上引导压管外,应在导压管的最高点装置集器或排气阀.(如图9)2.测量水蒸汽 测量蒸汽流量时,安装方式一般为差压变送器低于,高于节流装置两种.(如图 12)取压口位置应附合上述安装要求,并在导压管制高点处装上放气阀和气体收集器。3.测量气体 测量介质为清洁的气体流量时,安装方式一般为差压变送器高于,低于节流装置两种c如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。4.测量腐蚀性液体和气体 测量腐蚀性的液体和气体流量时,取压口应附合上述安装要求,不论管道是水平安装或垂直安装,差压变送器高于或低节流装置③.测量气体测量介质为清洁的气体流量时,安装方式一般为差压变送器高于、低于节流装置两种(如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。 该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。 该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。作为一种用于测量流量的仪表,涡街流量计与流量积算仪表放在一起用就能对液体流量和总量进行测量,并且还能用于很多其他的行业,给其他领域也带来了一定的好处。 现如今,涡街流量计已被广泛应用到工业生产中,作用也越来越重要,如果在涡街流量计使用过程中反映出测量数据不准确,首先要做的就是判断是那个方面的不正确导致了流量的误差,下面,苏川仪表和大家一起探讨关于涡街流量计测量误差的原因分析:1、温度对测量的影响:温度对一般的流量计测量介质都会有影响,温度高低影响了介质的密度,粘度等等,这些都会让测量结果不准确,出现误差。 消除此影响一般是对K系数进行修正,目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。2、选型方面的问题:实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小。 涡街流量计实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大,工艺条件的变动只是临时的,可结合参数的重新整定以提高指示准确度。3、参数整定方向的原因:产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数。而资料上参数的不一致性又影响了参数的确定,通过重新标定结合相互比较确定了参数,解决了此类问题。 涡街流量计作为一种高精度的仪器,不仅仅是在制造和使用的过程中需要严格遵守其要求,在后期的保养中也必须特别注意才能不使流量计提前退休。1、测量管、法兰、浮子的材料选择 针对酒精、乙醛流量测量,可采用一般防腐材料1Cr18NigTi制作测量管、法兰、浮子;针对粗醋酸、冰醋酸的流量测量,由于其腐蚀性强,则测量管内部接触被测介质的所有部位和浮子均要衬聚四氟乙烯材料,测量管、法兰采用1Cr18NigTi材料。 2.金属管浮子流量计和口径的计算与选择(针对液体流量测量) (1)当工艺专业提出液体体积流量Qva,我们用下式计算系数FV: 其中:ρs是所选择浮子材料的密度(g/cm3);1Cr18NigTi浮子ρs=7.8(g/cm3);PTFE浮子ρs=3.4(g/cm3);ρs是被测量介质的密度(g/cm3)。(2)根据以上计算得到的系数FV,我们可以得到对于液体用水标校时的流量QV(水):QV(水)=FV·Qva (3)根据生产厂家提供的流量表可选择出QV(水)所对应的金属管浮子流量计的口径、浮子号。 (4)按此浮子号的量程值除以系数FV得出介质的流量范围QN,刻度可在0.9QN至1.1QN选择。 (5)举例说明。原始技术数据见表1,计算结果及选择见表2。 3.现场显示及远传的选择 现场显示选用M7,指示实际状态下流体的瞬时流量值/小时。 远传型式可选用Es-电远传输出4~20mA,亦可选用EX-本安防爆远传输出4~20mA。 4.显示仪表选择 选择流量积算仪,它具有瞬时流量显示和比例累积流量积算功能。德国VSEAP1流量计定做孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系: 式中:qm为质量流量,kg/h;qv为工况条件下的体积流量,m³/h;x为流量系数;e为流束膨胀系数;△e为差压,Pa;Q为工况条件下被测流体的密度,kg/m³;d为工况条件下的节流开孔直径,mm。由(1)式和(2)式可以看出,被测流体的流量是流体的密度和孔板前后差压的函数。当测得某一差压时,由于所测流体的密度不同,所代表的流量是不同的,只有当流体的密度值等于孔板流量计设计条件中的密度值时,差压才能真实反映所测的流量。蒸汽从发生到使用,由于热损耗,温度和压力的下降是不可避免的,导致其密度与设计值的差异,从而产生了误差,并且随着蒸汽参数的波动而波动,实际测量时只能通过温压补偿来修正,补偿公式的严谨性直接影响测量误差。 气体涡轮流量计准确度等级为1.0级,在音速喷嘴法气体流量标准装置上检测时出现绝大多数不合格的问题,而之前并未:出现类似情况,该品牌流量计的合格率很高,通过对基表的检测与高频脉冲输出的检测,二者误差一致,且均为负误差,仪表显示与输出均正常。表1为误差最大的一台气体涡轮流量计高频脉冲输出误差和基表机械显示部分的误差值。 通过对标准装置的自检,并未发现异常,装置工作正常。为了保证检测的可靠性,将该批仪表在.2000L钟罩式气体流量标准装置上进行了复检。音速喷嘴法气体流量标准装置与2000L钟罩式气体流量标准装置的系统误差在0.3%以内。通过复检发现气体涡轮流量计的示值误差在不断变化,重复性较差,随着检测时间的延长,示值误差不断减小,向正方向发展,考虑到音速喷嘴实验室的环境温度为10.5℃,钟罩实验室温度为20.1℃,因此进行恒温.后再进行试验。恒温后再次对气体涡轮流量计进行检测,表2为该台气体涡轮流量计的高频输出误差。 通过表2可以发现在恒温后的检测结果误差发生了较大的变化,重复性也较好,考虑到两套装置的系统误差不超过0.3%,但实际检测结果最大误差偏移达到了2.30%,如此之大的偏移量并不是标准装置所引起的。将该台气体涡轮流量计马上拿到音速喷嘴气体流量标准装置上进行复测,所用喷嘴未改变,检测结果见表3。 从表3可以发现在没有对仪表经过任何改动的情况下,在同样的装置下,仪表的示值误差合格,且和之前在装置上检测的误差发生了较大的偏移。通过分析实验中各个影响因素,发现变化较大的只有温度,为了确认影响因素为温度,将该流量计在音速喷嘴实验室10.5℃的环境温度下恒温,恒温后再进行实验,检测结果见表4。 通过恒温后的气体涡轮流量计的示值误差与最开始检测的误差相接近,说明温度变化对仪表的误差产生了较大的影响。通过对送检用户的询问,由于用户是外地送检,出发较早,且送检车辆空间有限,所以在送检前一天晚上就将部分仪表的外包装拆掉,并将表装车,放置在室外,第二天早起送检,虽然在检测之前进行了短时间恒温,但表体温度仍然较低。流量计工况与标况(立方与标方)如何换算 m3/h德国VSEAP1流量计定做 评定涡街流量计性能指标主要有4个参数:K系数、量程比、重复性和准确度等级。其中,K系数是指一个测量周期内,流量计输出的脉冲数与流过流量计的相应流体总体积之比,每台流量计都.有一个对应的平均K系数,一般都是通过实流标定得出的;量程比是指流量计可测最大流量值与最小流量值的比值;重复性是指在相同测量条件下,重复测量同一个被测量,测量仪器提供相近示值的能力;准确度等级是指符合一定的计量要求,使误差保持在规定极限以内的测量仪器的等别或级别。 根据上述测试性能指标,对该方案研制的DN25mm、DN32mm和DN50mm共3种口径的样机一批共10台进行测试,10台样机启停质量法水流量标准装置上全部通过0.5级合格检定,特别是重复性指标,全部优于0.1%。其中一台DN25mm口径样机的标定结果见表1,其量程比达15:I,最小流速测到0.28m/s,量程范围明显高于同口径的各种容积式流量计,准确度等级高于涡街流量计等其他普通速度式流量计。 2014年,国内某核电站定制了一台DN25mm口径涡街流量计,用于计量含结晶和颗粒物的核废液,经用户现场标定其准确度等级达到0.4;另一化工企业用户的一台DN25mm口径涡街流量计,用于计量150℃下的甲基邻苯二铵有机液流量,介质粘度150mPa.s,用户现场实.流标定其准确度等级达到0.5级。1.为了保证电磁流量计测量管内充满被测介质,变送器最好垂直安装,流向自下而上.尤其是对于液固两相流,必须垂直安装。若现场只允许水平安装,则必须保证两电极在同一水平面。变送器两端应装阀门和旁路。2.电磁流量计信号比较弱,满量程时只有2.5~8mV,且流量很小时,只有几微伏,外界稍有干扰就会影响到测量精度。因此,流量计的外壳、屏蔽线、测量导管都要接地。并要单独设置接地点,决不能连接在电机、电器等公用地线或上、下管道上。3.为了避免干扰信号,安装地点要远离一切磁源(如电机、变压器等),不能有震动。变送器和转换器之间的信号必须用屏蔽导线传输。不允许把信号电缆和电源线平行放在同一电缆钢管内。信号线越短越好,长度一般不得超过30m。转换器应尽量接近变送器c4.为了避免流速分布对流速的影响,产生测量误差。流量调节阀应设置在变送器下游. 因此,在电磁流量计前必须有5~10D左右的直管段,以消除各种局部阻力对流线分布对称性的影响。
您如果需要德国VSEAP1流量计定做的产品,请点击右侧的联系方式联系我们,期待您的来电