欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEVHM01-2流量计原装

发布时间: 热度:
德国VSEVHM01-2流量计原装同时我们还经营:卡装式涡轮流量计高精确度,一般可达1%R、0.5%R,高精度型可达0.2%R重复性好,短期重复性可达0.05%~0.2%,正是由于具有良好的重复性,如经常校准...

德国VSEVHM01-2流量计原装同时我们还经营:卡装式涡轮流量计高精确度,一般可达±1%R、±0.5%R,高精度型可达±0.2%R重复性好,短期重复性可达0.05%~0.2%,正是由于具有良好的重复性,如经常校准或在线校准可得到极高的精确度,在贸易结算中是优先选用的流量计输出脉冲频率信号,适于总量计量及与计算机连接,无零点漂移,抗干扰能力强可获得很高的频率信号(3-4kHz),信号分辨力强范围度宽,中大口径可达1:20,小口径为1:10结构紧凑轻巧,安装维护方便,流通能力大适用高压测量,仪表表体上不必开孔,易制成高压型仪表涡轮流量计传感器类型多,可根据用户特殊需要设计为各类型传感器,例如低温型、双向型、井下型、混砂型等可制成插入型,适用于大口径测量,压力损失小,价格低,可不断流取出,安装维护方便性能特点  设计发明的新型孔板流量计整流器的优势主要在于提取、安装整流管的过程中无需截断流体或置换流体管路,实现在线维护整流器。此外,设计驱动装置使整流管在上下阀腔内穿梭时,可实现整流管两端同步升降,使整流器安装与拆卸快捷、简便。整个维护过程可避免高压流体给现场操作人员带来伤害,同时也解决了清洗、更换整流器时需要停产的问题。  通过上阀腔齿轮轴、滑板阀、下阀腔齿轮轴的配合就可移动管腔内的整流管(板),取出与安装归位的整个过程简单、平稳、快捷,实现了在线维护整流器,减少天然气或有毒有害气体与操作人员的接触,消除了潜在的危险。使用方法  孔板流量计装置工作前,首先对密封性进行检查,保证其处于安全工作状态。工作时主要包括整流管(板)平稳提升、整流管(板)安全取出以及整流管(板)安装归位三个部分。整流管(板)平稳提升:打开平衡阀,使上阀腔与下阀腔连通,从而平衡上阀腔与下阀腔内的压力。其次,打开滑板阀,驱动下阀腔齿轮轴,将整流管(板)从下阀腔移至上阀腔,接着关闭滑板阀,关闭平衡阀。整流管(板)安全取出:打开放空阀,上阀体通过放空通孔与外界大气连通,使上阀腔与外界的压力平衡。打开顶丝,取出顶板、压板。驱动上阀腔齿轮轴,将整流管(板)从上阀腔取出。整流管(板)安装归位:将整流管(板)放入上阀腔,驱动上阀腔齿轮轴,将整流管(板)下放上阀腔底部为止。盖好压板、顶板,安装顶丝,关闭放空阀。打开平衡阀,使上阀腔与下阀腔内的压力平衡。打开滑板阀,驱动下阀腔齿轮轴,将整流管(板)从上阀腔移至下阀腔。关闭滑板阀,关闭平衡阀。打开放空阀,将上阀腔气体放空,确保上阀腔内部压力平稳,最后关闭放空阀。电磁流量计是一种测量导电介质体积流量的感应仪表,在进行现场监测显示的同时,可输出标准的电流信号,供记录、调节、控制使用,实现检测自动控制,并可实现信号的远距离传送。电磁流量计具有精度高、灵敏度高、稳定性好等优点,在供水企业中有着广泛的应用前景,特别是在大口径、安装环境好的工厂、居民区等场所,虽然智能电磁流量计的使用已经非常成熟。但是,仍有一些问题需要注意。一、信号传输问题:    一体式智能电磁流量计在区域管网中运行时,可以为城市供水调度提供一定的决策信息。因此,用户对电磁流量信号的实时性和连续性提出了更高的要求。如果智能电磁流量计能完成仪器本身信号的自动转换和无线传输,减少数据采集的兼容或相互转换等困扰,那将为企业的使用提供便利,也将为仪表的推广应用增加更大的优势。二、电源问题:   目前电磁流量计不自带电源,造成了室外安装不方便,一旦断电,将造成用作结算水表的流量计数据缺失,这样对其断电时段缺失水量的计量与推算也就提出了新的问题。若电磁流量计能自带电源,就能从根本上解决这一问题,也将促进其在结算水表中的推广应用。三、防雷问题:   一体式智能电磁流量计在雷雨天气覆盖较广的地区防雷是个重要的工作。在严格做好接地、电源保护后,在空旷地区安装的电磁流量计被雷击的概率还是很高。所以简单有效的办法是提高流量计自身的防雷性能,如不能根本性解决,则应对其内部电路进行分离保护,这样即使雷击损坏,也能降低更换成本。当前热式气体质量流量计大部分用于测量气体,只有少量用于测量微小液体流量。热式质量流量计具有性能可靠、无可动部件、安装方便,压损小、量程比宽(可达1000:1)、灵敏度高等特点2,特别适用于大管径、低流速,非圆截面管道、现场空间狭窄处测量等特殊工况,在环境保护和过程工业的应用发展迅速,例如:污水处理过程中发生的气体,燃料电池工厂各种气体的流量测量及煤粉燃烧过程粉/气配比控制等。  与常用的孔板流量计、涡街流量计和差压式均速管、文丘里流量计相比较,热式气体质量流量计有如下特点:(1)直接测量流体的质量流量或标准状态下的体积流量,不需要进行温度压力补偿;.(2)一次元件结构简单,采用不锈钢或特种合金外壳覆盖,不怕脏污或腐蚀,不存在堵塞问题,且表面脏污极易清除。带不断流装拆装置,可实现不停气装拆,清洗维修,简便易行;(3)量程比特大,可达1000:1,可测流速范围0.1m/s~60m/s,完全覆盖-般工业废气及煤气厂输出总管中的流速范围。因而只需在总管上装一台插入式热式气体质量流量计,就可满足计量要求。大大地节省了投资,简化了系统结构,方便了管理,提高了系统工作的可靠性;(4)仪表精确度高(士1.5%FS),性能稳定(重复性士0.25%FS),几无压力损失,对管道振动不敏感。此外,热式气体质量流量计灵敏度高,尤其适合于大管径、低流速的流量测量。且在大管径中使用,其性能价格比更显优势;防爆、防护、抗腐蚀设计,又使它能适应恶劣工况,危险场合。  热式气体质量流量计作为一种插入式流量计,由.上述插入式流量计的测量公式可见该流量计同样方便适用于方形管道的气体流量测量。环保管道一般用圆形,而空调的管道很多地方为方形。孔板等很多仪表没有测量方形管道的数据,若使用插入式热式气体质量流量计,不论圆形或是方形管道均可通过计算获得,这也解决了低压方形通风管道的流量测量问题。1.量程选择.当使用低量程的流量计时,仪表读数偏差会增加,而使用满量程时,若参数值波动较大,则会使测量值偏低。2.差压计零位,静压漂移,随环境改变示值超差。3.差压计读数误差的影响因素有:(1)双波纹管差压计安装时其倾斜度超标或安装不牢靠。(2)存在静压零位误差。(3)波纹管受腐蚀或泄漏。(4)四连杆机构摩擦过大。(5)记录笔在卡片上压得过紧,墨水管紧使笔尖不能正常工作。(6)差压计存在不规则的校验特性,且为不可修正,或可能存在校准误差。(7)记录曲线为人为手动补描。(8)记录卡片不规范,存在偏心引起流量计误差。(9)时钟走时不准。一.和其它流量计一样, 虽然电磁流量计它的测量范围比是30:1, 比涡街流量计和差压式流量计都要高, 但也是有限制的,许多客户定表时,常常把它和水表相比较,以为可以测量很低的流速,一般情况下,它只能测0.1m/s.低于此流速电磁流量计就很难正确测量.所以定货初期对流量范围比要搞清楚.定货时不能按原先管道口径来定货,最好按你实际流量来定仪表口径。二.和其它流量计一样,电磁流量计对安装前后直管道也有要求,只不过比其它类流量计要求更低,但最关健一点要满足:就是满管, 再满管.不满管的情况下容易引起流量计乱跳:三.和其它流量计一样,电磁流量计也有防护等级,一般一体式的防护等级为IP65,分体式的为IP68(针对传感器而言), 如果客户对仪表安装环境有要求,安装地点在地下阴井或其它一些潮湿的地方,建议客户选用分体式的.以免选错对仪表造成损害。四.电磁流量计可以测腐蚀性液体,但定货初期客户要正确提供其它测量介质属性,以免选型时对电极选型上的错误,导致传感器在后期使用过程中报废,给客户带来不便和经济上的损失。五.电磁流量计虽说可靠性比较好,一般情况下不会损坏,但由于其原理决定,传感器电极表面一直和液体接触,时间久了,电极表面比较容易受污染。所以电磁流量计一般情况下,客户有条件拆的情况下,建议一年到一年半之间拆出来清洗一次电极以保证流量计整机的测量精度。任何仪器仪表都是需要“保养”的,电磁流量计也不例外。六.在主管线是垂直管线时,一般情况下,要求水流是自下而上,尽量不要自上而下。后者容易引起流量波动比较大。安装除了满管以外,这点也是很重要的,其次就是前后直管道的距离了。金属转子流量计适用于小流量、低雷诺数的介质流量测量,具备现场指示或电远传功能,远传输出为标准的4~20mA信号。可以配置限位开关,控制报警。该仪表具有结构合理,使用维护方便,压力损失小。  转子流量计是一种采用改变流量面积原理的流量计。当管道内流体在流动中遇到流体时,流体在堵塞前后会形成压差,压差的大小与堵塞流体时的流动面积和流速有关,利用这种压差促使活动块体材料随流量变化,改变流动面积,使堵塞前后的压差保持不变,当堵塞材料的位置与流量有关时,由此可以获取到流速,然后得到流量值。金属转子流量计的优点:1、全金属结构设计,坚固可靠,耐高温、高压、耐腐蚀、使用寿命长。2、行程短,总高250毫米,安装方便,维修小。 3、机械指针表示瞬时流动,液晶显示瞬时、累积流动,还可输出脉冲、输出报警。4、金属转子流量计可用于测量小直径、低流量。 5、具有数据恢复、数据备份、功耗保护和误差自诊断等功能。6、可使用易燃和易爆的危险情况。7、垂直、水平、上下、自下而上、侧出及其他安装形式、法兰或螺纹连接。8、有多种形式,有现场型、长距离型、夹套型、防爆型、防腐型等,适用于不同场合。  金属转子流量计有就地显示型和智能远传型,带有指针显示瞬间/累积流量液晶显示,上、下限报警输出,累积脉冲输出,批次控制,标准的二线制4-20mA电流输出等多种形式,为用户使用提供了非常广阔的选择空间.德国VSEVHM01-2流量计原装1.一次测量元件引起的误差  孔板流量计中的节流元件是尖锐的直角边缘,流体在节流元件的入口收缩,根据伯努力方程,流速增加,压力减小,孔板的测量原理就是根据孔板入口和出口的压差进行测量的。孔板平钝后流出系数增大,产生测量误差。流出系数对蒸汽流量测量的影响是普遍存在的。  测量管也是节流装置的组成部分,其结构尺寸对流体流动状态有重要的影响,测量管除满足前10D后5D的要求外,还对内表面的光滑度有要求。粗糙管的流速分布与光滑管是有区别的,流出系数也不相同,管道结垢、腐蚀,流出系数发生变化,产生测量误差。  对于孔板入口边缘磨损的问题,我们可以选用标准喷嘴,由于喷嘴入口是一个光滑的曲面,它的抗磨损,抗积污,抗变形程度远好于孔板,流出系数稳定性也比孔板好,压力损失也比孔板小得多,而且它的检定周期为4年,大大减少了维护费用。  对于测量管的问题,在管道安装时就尽量选用光滑度高,质量好的管道,必要时请专业厂家定制测量管道、连接法兰,冷凝器等,补偿用的温度和压力测量点也可以统一开工获取。虽说一次性投资高些,但由于投入使用后没有特别原因,一般不进行更换,还是使用周期越长越好,这样综.合经济效益还是高些。2.测量信号的传递失真  测量信号传递是孔板前后的差压信号经导压管传递到差压变送器,由于结构的不同,孔板流量计不同于涡街流量计那样直接装在管道上,它需要进行信号传递。对于蒸汽流量测量而言,传递部分可由阀门,导压管,冷凝器等部件组成。对于信号传递部件来讲,应保证传递信号不失真。实际使用中的大部分故障,往往是信号传递失真引起的。差压信号产生的传递失真比作为补偿用的温度和压力信号失真影响更大,必须引起注意。冷凝器在信号传递中处于关键位置,冷凝器中的液面保持一定高度,多余的冷凝液要回流到蒸汽管道,既要保证冷凝器中蒸汽很好地冷凝,又要使冷凝液回流畅通无阻。  气相导压管的一次根部阀门应保证蒸汽气相进入冷凝器,冷凝器里面多余的冷凝液回流到蒸汽管道,否则两只冷凝器液面不能保持相平,会对差压信号产生附加误差。一次根部阀门尽量选用闸阀,保证压力信号传递通畅无阻,减少测量误差。  测量用的导压管要加保温伴热,否则冬季不能正常工作。不管采用电伴热还是蒸汽伴热,一定要保证两只导压管受热均等,不然会因导压管中的液体的密度不同而产生附加差压误差。  作为压力补偿用的变送器一般和压力取压口不在同一高度上,如果变送器比取压口低,所测出的压力为管道中蒸汽的压力加上导压管中冷凝液产生的压力,可在变送器中进行正迁移将这部分压力迁移掉。使变送器测出的压力为管道中实际蒸汽压力。3.蒸汽密度问题产生的误差  测量蒸汽质量流量时要根据蒸汽的密度进行计算,因蒸汽的密度计算不准确产生测量误差。蒸汽流量测量仪表中涡街流量计是用工艺车间提供的蒸汽密度值为参考值,不是实际的密度值,得出的蒸汽流量会和实际流量有误差。选用涡街流量计时,最好选用能进行温度和压力补偿的型号,并且安装测温和测压元件取得温度和压力数值。孔板式流量计测出的流量由DCS系统显示,没有进行温度压力补偿。为了提高测量的准确度,必须进行温度压力补偿。对于孔板流量计,取得差压信号的同时,还需测得温度和压力信号,通过DCS中的专用软件进行温度和压力补偿。4.相关系数的影响  流出系数C和可膨胀系数ε在一定范围内可看作常数,但是,当蒸汽的状况偏离设计状态时,其流出系数C和可膨胀系数ε就会发生变化,就不能视为常数。测量小流量时,随着雷诺数变小,流出系数C将产生较大的变化。测量高压时,则必须考虑气体的可膨胀系数ε的影响,如果我们只补偿密度变化的影响,即使实现了对密度的完全补偿,其它各参数变化累加后的最大误差仍达6%左右,其中,可膨胀系数ε引入的误差最大。所以,要想提高仪表的测量精度,除补偿密度外还应考虑整个补偿方程中其它参数变化的补偿问题。DCS中的蒸汽测量模块中,不仅有密度补偿方式,还有流出系数C和可膨胀系数ε的修正办法,只要我们选用合适的流量测量模块,就能提高蒸汽流量的测量准确度。  一般认为,蒸汽干度X较高(X≥95%)时流体可视为单相流体。温度压力补偿可按通常方法进行。但出现-定误差。干度越低密度越大。在蒸汽干度较低(X<95%)时,管道中的流体处于二相流状态。情况严重时,流体分层流动,产生误差更大。目前还没有在线的干度测量仪表测量蒸汽的干度,最好的办法就是加强蒸汽传输管道的保温,提高蒸汽的过热度,使蒸汽的干度较高,孔板流量计测量也比较准确。  高流速时,电磁流量计中的流体为湍流,且雷诺数越大,流体小尺寸结构越小。但流体整体向前的流速不会因为湍流而减小,这样的情况下可知电磁流量计流体中的非导电物体的尺寸更小。当含水率不变,非导电物体物质半径变小后对电磁流量计的整体流速分布不变、对流量计的磁场分布影响较小。根据式(1)可知,电磁流量计中非导电物质的半径大小对流量计的权重函数是有影响的。  当电磁流量计中心横截面内含有M(M=0,1,2.,-.)个油泡时传感器的权重函数分布情况,本文算例设定M=3权重函数分布情况计算方式。图1为电磁流量计传感器截面内存在3个球形油泡时的结构模型图。其中,x轴与y轴与图1描述--致,图1中只显示了测量区域部分,测量区域流体中存在3个油泡。y正半轴、负半轴与管壁的交点是流量计的电极位置。  图1中3个油泡相互不重叠,此时传感器内部感应电势仍满足Laplace方程。为了对该问题进行求解,需建立2种坐标系,一种是以传感器中心为原点建立的二维直角坐标系(x,y),另一种是以各个油泡中心为原点建立的M个二维极坐标系(ri,θi)。首先在二维直角坐标系下对该问题进行求解(本例M=3),求解感应电势方程时需借用一个辅助的格林函数G,G满足Laplace方程且边界条件  式中,R为电磁流量计半径的长度值;მG/an为电势在半径方向上的导数;δ(θ)为电势G在流量计管壁处所满足的条件,其值仅在电极表面处不为0。当流体中存在油泡时,G表达式为   式中,R为测量管的半径;x与y分别表示测量区域中的位置。  当电磁流量计流体中存在3个油泡时,G=G+G1+G2+G3图2显示了流量计流体截面中存在3个不重叠的油泡时,流量计截面内部权重函数wy分布图;从式(2)以及仿真图中可以发现油泡所在位置权重函数值是0。当然,存在多个油泡分布在不同位置流体中时权重函数分布情况也可以用上述方法计算。  仿真实验中,设定不同大小的非导电物质对电磁流量计权重函数进行仿真,如图3所示为不同大小非导电物质对电磁流量计权重函数的影响。图3中左边的分别为权重函数分布图,右边分别为权重函数等势图,其中R单位为cm。从图3中可见,当电磁流量计中的非导电物质半径越来越小,对电磁流量计的权重函数的影响就越小。  为了更清楚地揭示电磁流量计的权重函数与流量计中非导电物质半径之间的关系,定义c为非导电物质对流量计权重函数的影响的评价指标式中,Wxy为含有油泡等非导电物质时电磁流量计在测量区域坐标(x,y)的权重函数;Wxy0为电磁流量计不含非导电物质时测量区域坐标(x,y)的权重函数;A为权重函数区域(测量区域)。  图4为不同大小非导电物质对流量计权重函数的影响分析图。图4中横轴为非导电物质半径,纵轴为权重函数的影响因子c。从仿真结果可以看出流体中的非导电物质半径较小时,对电磁流量计的权重函数影响越小。在本例中,当流体中非导电物质小于0.02R时,对电磁流量计的权重函数分布几乎没有影响。根据SH/T3104-2000《石油化工仪表安装设计规范》中规定涡街流量计的安装要求如下:(1)测量液体时涡街流量计应安装于被测介质完全充满的管道上。(2)涡街流量计在水平敷设的管道上安装时,应充分考虑介质温度对变送器的影响。(3)涡街流量计在垂直管道上安装时,应符合以下规定:①测量气体时,流体可取任意流向②测量液体时,液体应自下而向上流动。(4)涡街流量计下游应具有不小于5D(流量计直径)的直管段长度,涡街流量计上游直管段长度应符合以下规定:①当工艺管道直径大于仪表直径(D)需缩径时,不小于15D;②当工艺管道直径小于仪表直径(D)需扩径时,不小于18D;③流量计前具有一个90°弯头或三通时,不小于20D;④流量计前具有在同一平面内的连续两个90°弯头时,不小于40D;⑤流量计前具有不同平面内的连接两个90°弯头时,不小于40D;⑥流量计装于调节阀下游时,不小于50D;⑦流量计前装有不小于2D长度的整流器,整流器前应有2D,整流器后应有不小于8D的直管段长度。(5)被测液体中可能出现气体时,应安装除气器。(6)涡街流量计应安装于不会引起液体产生气化的位置。(7)涡街流量计前后直管段内径与流量计内径的偏差应不大于3%。(8)对有可能损坏检测元件(旋涡发生体)的场所,管道安装的涡街流量计应加前后截止阀和旁路阀,插入式涡街流量计应安装切断球阀。(9)涡街流量计不宜安装在有震动的场所。电磁流量计在设定状态下(如何进入设定状态请参照前述操作),用▲或▼键上下翻屏查找,直到屏幕出现空管报警允许字样,按右键确认键确认进入空管报警允许设置,用▲键在允许、禁止选项中选择允许按右键确认键确认用▲键选择空管报警阈值设置,按右键确认键确认进入空管报警阈值设置,输入空管报警阈值,按右键确认键确认,按▲键选择空管量程修正设置,按右键确认键确认进入空管量程修正设置,输入空管量程修正值,按右键确认键确认返回。若按右键确认键不放持续3秒钟则直接返回到显示状态,若要继续设定其它参数按▲键。注①当仪表检测空管状态,此时又设置为空管报警允许则会将仪表输出和显示全部置为0②空管报警阈值设置是选择空管报警灵敏度范围的,最大阈值可设为999.9%超过该值意味着空管③空管量程修正是为测量相对电导率而用的,在传感器充满液体情况下,修正系数使电导比为一个确定值,该值范围为0~3.999例如,被测液体是水,其电导率约为100us/cm,修正系数可设为1空管报警阈值设置小于999.9%;当被测液体为酸碱盐其电导率大于100us/cm修正系数可设为小于1空管报警阈值设置小于999.9%,当被测液体电导率小于水的电导率时,修正系数可设为大于1空管报警阈值设置小于999.9%;这样才不会出现误报警。假若出现误报警可参照上述重新设置修正系数和空管报警阈值④报警提示:分体式电磁流量计在显示屏中间用空管字样表示,一体式在显示屏右上角用!表示。⑤若对空管量程修值和空管报警阈值不清楚最好选择空管报警关闭。针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。  该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。  该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。德国VSEVHM01-2流量计原装用于动流测量的电磁流量计,通常在下列三个方面须作特殊设计,并在投运时作适当的调试.1.激励频率可调,以便得到与动频率相适应的激励频率.太和太低都是不利的.2.电磁流量计的模拟信号处理部分应防止动峰值到来时进入饱和状态.动流的动峰值有时得出奇,如果峰值出现时,电磁流量计的流量信号输入通道进入饱和状态,就如同峰值被消除,必将导致仪表示值偏低.3.为了读出平均值,应对显示部分作平滑处理.由于电磁流量计的测量部分能快速响应动流流量的变化,忠实地反映实际流量,但是显示部分如果也如实地显示实际流量值,势必导致显示值上下大幅度跳动,难以读数,所以,显示应取段时间的平均值.其实现方法通常是串入惯性环节,选定合适的时间常数后,仪表就能稳定显示。但若时间常数选得太大,则在平均流量变化时,显示部分响应迟钝,为观察带来错觉.动流流量测量方法有三种:a.用响应快的电磁流量计;b.用适当的方法将动衰减到足够小的幅值,然后用普通流量计进行测量;c.对在动流状态下测得的流量值进行误差校正.  有的系统中,b c两种方法需结合起来才能实现测量,这是因为动幅值大,出估算公式的适用范围,若仅用阻尼方法,衰减后的动幅值又未能进入稳定流范围。电磁流量计是一种测量导电介质体积流量的感应仪表,在进行现场监测显示的同时,可输出标准的电流信号,供记录、调节、控制使用,实现检测自动控制,并可实现信号的远距离传送。    智能电磁流量计具有精度高、灵敏度高、稳定性好等优点,在供水企业中有着广泛的应用前景,特别是在大口径、安装环境好的工厂、居民区等场所,虽然智能电磁流量计的使用已经非常成熟。但是,仍有一些问题需要注意。一、信号传输问题:    电磁流量计在区域管网中运行时,可以为城市供水调度提供一定的决策信息。因此,用户对电磁流量信号的实时性和连续性提出了更高的要求。如果智能电磁流量计能完成仪器本身信号的自动转换和无线传输,减少数据采集的兼容或相互转换等困扰,那将为企业的使用提供便利,也将为仪表的推广应用增加更大的优势。二、电源问题:    目前智能电磁流量计不自带电源,造成了室外安装不方便,一旦断电,将造成用作结算水表的流量计数据缺失,这样对其断电时段缺失水量的计量与推算也就提出了新的问题。若电磁流量计能自带电源,就能从根本上解决这一问题,也将促进其在结算水表中的推广应用。三、防雷问题:    电磁流量计在雷雨天气覆盖较广的地区防雷是个重要的工作。在严格做好接地、电源保护后,在空旷地区安装的电磁流量计被雷击的概率还是很高。所以简单有效的办法是提高流量计自身的防雷性能,如不能根本性解决,则应对其内部电路进行分离保护,这样即使雷击损坏,也能降低更换成本。

您如果需要德国VSEVHM01-2流量计原装的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网