德国VSEAR800流量计联系同时我们还经营:1.节能效果好 弯管流量计因其独特的测量原理,没有其他流量计必须具备的节流件或插入件,最大限度地减低了因计量检测器具带来的流体在管道内的压力损失,减少了加压设备的投入和加压设备的电能消耗。由于孔板流量计是利用对流体节流装置施行节.流产生的差压来测量流体流量,流体在孔板上存在压力损失,因此使用时为了保证孔板流量计的测量精度,在选定孔板流量计的工作压差时都取高压差值。通常情况下,该节流压力损失(称为不可恢复压力损失)可达孔板运行流量下产生压差值的30%~70% (与孔板的β值有关)。孔板流量计压力损失等损耗量用见表1。2.设备使用状况较好 冶金工业煤气中,含有大量的粉尘、水、焦油和萘,使很多流量测量计量设备不能正常工作。弯管流量计的特殊结构和导压管上的三通阀可在正常工作状态下清除传感器的堵塞附着物,实用便利,在现场试用4年来从未发生堵塞现象。3.弯管流量计结构简单 弯管流量计的弯管传感器,是一个90的标准弯管,内部没有任何节流件和插入件,是测量元件中最为简单实用的测量件。随着机械加工业的快速发展和高精度数控机床用于机械加工业,弯管流量传感器的加工精度不断提高,质量越来越好。 弯管流量计的直管段要求前5D,后2D,孔板流量计的直管段要求前10D,后5D。弯管流量计的重复性好,可达0.2%。4.弯管流量计适应性强,量程范围宽 弯管流量计在高溫、高压、冲击、振动、潮湿、粉尘等恶劣环境条件下,优于孔板流量计,震动和冲击对弯管流量传感器的正常工作几乎没有影响,高温、高压对弯管流量计来说只要采用与工艺管道相同的材质,就可以解决。 弯管流量传感器的几何尺寸几乎没有限制,管径的大小从几十毫米到2n以上,只要弯管的弯径比符合规定要求,都可以做为传感器进行流量测量。 弯管流量计的设计特点最适合在高温、高压状态下(高温蒸汽、高溫水)的流量计量,可降低能源损耗,降低压力损失,提高供热效率。弯管流量计的量程比可达10: 1,孔板流量计的量程比一般为35: 1.5.弯管流量传感器的耐磨性好 因弯管流量传感器的特殊结构,内部没有任何节流件和插入件,固弯管流量传感器几乎不存在磨损,是保证弯管流量计长期运行精度不变的重要条件。孔板流量计入口边缘尖锐度对磨损十分敏感,只要有微量的磨损,就会直接影响到测量精度,在气体的长期高度冲刷下,也会使孔板开孔直角入口的边缘很快钝化,使测量精度系统发生变化造成误差。6.弯管流量计安装方便,维护量小 弯管流量计具有良好的耐磨性,长期运行的稳定性和可在线进行清污等特点,可采用直接焊接的方法进行安装,避免了流量测量装置现场跑、冒、滴、漏,令人头痛的问题,降低了安装费用。 由于弯管流量计一次测量件长期运行无磨损件,大大降低了维护费用,几乎是免维护,一般可达到被测气体管道的使用寿命。 孔板流量计的插入件和节流件容易堵塞,附着脏物,影响测量准确性。为保证孔板流量计的测量精度,必须经常进行拆除检查清污,这样频繁的拆装、检查、清污维修,在连续作业的冶金企业难以做到,特别是对在较大管道上的孔板流量计就更难以做到,可见在工业煤气计量中具有多种不确定因素影响测量误差。7.弯管流量计不易冻管 孔板流量计的结构、工作原理达到的测量精度,节流件起到了决定性的作用。节流件对气体在管道的流动具有非常大的阻力,一般只能利用输气管道.截面的1/3,大量潮湿含水的气体在节流件截面上形成了大量的水珠,遇冷后结霜、结冻堵管。为解决煤气供应的冻管问题,必须给每套孔板加装保温伴.热装置,来保证新疆地区5个月的冬季运行。表2为孔板流量计运行费用。 弯管流量计由于特殊结构和安装的多样性(水平转水平,水平转垂直向下,垂直向下转水平,垂直直管,水平直管等安装方式,见图3),可以有效防止煤气计量中冻管的发生,节省热能源和运行费用。应用中存在的问题有: 1)气体涡轮流量计要求被测介质清洁。人工煤气如净化不好,存有煤焦油和萘等,会严重影响计量的精度。致使此表在冬季只运行半个月就出现故障而不记数,拆开以后,发现轴承弹簧圈严重腐蚀。 (2)断电造成气量丢失。 解决问题的对策: 1)合理地制定保养计划:根据腐蚀情沉而定,冬季半个月,其他季节可稍长一些(1~2个月)。另外,传感器在工作中,叶轮的速度很高,即使在润滑良好时,仍有磨损产生,在使用一段时间后,应换轴承并重新标定。2)加装油过滤器(见图1)。其工作原理:当气体进入罐体后经挡板进入净化用油中,人工煤气中的煤焦油灰尘萘硫化物等杂质溶于油中,从油中返上的气体经不锈钢过滤器后进入流量计。加装油过滤器后计量表不但运行稳定,而且保持精度。1997年在装有涡轮流量计的600余户的调压站,安装一台油过滤器2台德莱塞表,经过近5个月的对比实验,效果良好,仪表运行稳定,没有发生过任何 故障。该表与德莱塞表进行对比,总误差在1%内,能够满足调压站的要求。 3)对巡视人员加强计量知识的培训,对每天的数据进行运行分析。 4)气体涡轮流量计中的锂电池一般可连续使用一年,但要保证计量表稳定运行,不能等到电池没电再换。1.孔板流量计前后的直管段必须是直的,不得有肉眼可见的弯曲。2.安装节流件用得直管段应该是光滑的,如不光滑,流量系数应乘以粗糙度修正稀疏。3.为保证流体的流动在节流件前1D出形成充分发展的紊流速度分布,而且使这种分布成均匀的轴对称形,所以①直管段必须是圆的,而且对节流件前2D范围,其圆度要求其甚为严格,并且有一定的圆度指标。具体衡量方法:A.孔板流量计前OD,D/2,D,2D4 个垂直管截面上,以大至相等的角距离至少分别测量4个管道内径单测值,取平均值D.任意内径单测量值与平均值之差不得超过±0.3%B.在节流件后,在OD和2D位置用上述方法测得8个内径单测值,任意单测值与D比较,其最大偏差不得超过±2%②节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的局部阻力件形式有关和直径比β有关,见表1(β=d/D,d为孔板开孔直径,D 为管道内径)。4.孔板流量计上游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的形式和β=0.7(不论实际β值是多少)取表一所列数值的1/25.孔板流量计上游侧为敞开空间或直径≥2D大容器时,则敞开空间或大容器与节流件之间的直管长不得小于30D(15D).若节流件和敞开空间或大容器之间尚有其它局部阻力件时,则除在节流件与局部阻力件之间设有附合表1上规定的最小直管段长1外,从敞开空间到节流件之间的直管段总长也不得小于30D(15D)。为保证超声波流量计流量测量精度,选择测量点时要求选择流体流场均匀的部分,一般应遵循下列原则:1、被测管道内流体必须是满管。2、选择被测管道的材质应均匀质密,易于超声波传播,如垂直管段(流体由下向上)或水平管段(整个管路中最低处为好)。3、安装距离应选择上游大于10倍直管径,下游大于5倍直管径(注:不同仪器要求的距离会有所不同,具体距离以使用的仪器说明书为准)以内无任何阀门、弯头、变径等均匀的直管段,测量点应充分远离阀门、泵、高压电、变频器等干扰源。4、充分考虑管内结垢状况,尽量选择无结垢的管段进行测量。外夹式流量计传感器安装要点 时差式超声波传感器安装方式有三种,分别是V法、Z法和W法,如图3所示。 测量时采用何种安装方式,仪器说明书均有规定,但在边界范围一般比较模糊。如TFX1020P时差式超声波流量计:V型安装法适用测量管径25~400 ㎜,Z型安装法适用测量管径100~2540㎜,W型安装法适用测量管径65㎜以下小管。V型与Z型、V型与W型在适用测量管径均有部分重叠,如遇此情况 则按下列原则选择最佳安装方式:V型安装一般情况下是标准安装方式,使用方便,测量准确。当被测管道很粗或由于被测流体浊度高、管道内壁有衬里或结垢太 厚,造成V型安装信号弱,仪表不能正常工作时,选用Z型安装。原因是使用Z型安装时,超声波在管道中直接传输,没有折射,信号衰耗小。W型安装适于小管, 通过延长超声波传输距离的办法来提高小管测量精度,如图3(c),使用W型安装时,超声波束在管内折射三次,穿过流体四次。 流量传感器安装方式有两种,分别是对称安装和同侧安装。对称安装适用于中小管径(通常小于600㎜)管道和含悬浮颗粒或气泡较少的液体;同侧安装适用于各种管径的管道和含悬浮颗粒或气泡较多的液体。外夹式超声波流量计传感器安装要求1、剥净测量点处附近保温层和保护层,使用角磨砂轮机、锉、砂纸等工具将管道打磨至光亮平滑无蚀坑。要求:漆锈层磨净,凸出物修平,避免局部凹 陷,光泽均匀,手感光滑圆润。需要特别注意,打磨点要求与原管道有同样的弧度,切忌将安装点打磨成平面,用酒精或汽油等将此范围擦净,以利于传感器粘接。2、在水平管段上,两个传感器必须安装在管道轴面的水平方向上,并且在轴线水平位置±45°的范围内安装,以防止管内上部流体不满、有气泡或下部有沉淀等现象影响正常测量,如图5所示。3、传感器安装处和管壁反射处必须避开接口和焊缝,如图6所示。4、传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。涡轮流量计利用置于流体中的叶轮的旋转角速度与流体流速成比例的关系,通过测量叶轮的转速来反映通过管道的流体体积流量大小,是流量仪表中比较成熟的高准确度仪表之一。 流量计内有经过精密加工的叶片,它与一套减速齿轮和轴承一起构成测量组件,支撑涡轮的两个不锈钢自润滑轴承,保证该组件有较长的使用寿命。流量计亦可选用外部润滑油泵润滑轴承,但注意不能过量。 流量计露天安装,由于流量计大部分是电子显示,表头内有电路板,长期露天放置,容易造成电路板损坏受潮,液晶屏不显示,或者烧坏电路板。建议安装计量仪表防护装置。 涡轮流量计在安装过程中,不能敲打表具。流量计受硬力冲击,导致表具损坏。安装流量计前,一定要吹扫,吹扫过程中一定不能带着表具,管道中的焊渣容易打坏涡轮流量计的叶轮,造成表具不计量或者计量不准确。 为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。 涡轮流量计在使用前一定要加润滑油,但是不能加多,在燃气气质并不是太干净的环境中,润滑油过多容易使气质中的杂质粘附在卡箍式涡轮流量计的叶轮上,从而造成计量不准确,时间长了,容易磨损表具。 热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。 热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。 浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为 式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。 如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。德国VSEAR800流量计联系 由于孔板流量计有多个测量单元,影响其测量准确度的因素很多(如孔板的加工误差,安装误差、计量软件的计算误差等)。此外,在现有工况条件下,由于介质中的杂质对孔板有一定的冲击腐蚀作用,易造成差压变送器产生零点漂移,特别是当天然气处理效果不理想时,对计量的影响更大。因此,节流装置和差压变送器的使用维护是一个重点。应在下面的实际运行中加以注意:(1)当天然气处理效果不理想时,在孔板上游端面会沉积脏物。不仅会降低孔板的使用寿命,还会造成较大的计量偏差。(2)变送器导压管的作用是将孔板前后的压力信号引入差压,测量出差压值参.与流量计算,上下游导压管带液会使差压偏小(大),造成流量偏小(大)。在冬季,导压管冻堵现象较常见,如果流量值出现大的起伏,很可能是导压管带液或冻堵了。(3)孔板胶圈变形。由于孔板胶圈在清油的浸泡下容易变形(这种情况在夏季尤为突出),因此在.天然气处理装置停运的情况下,要注意检查胶圈变形的情况,-旦孔,板松动应立即更换,不然不仅会因胶圈泄漏造成较大的计量误差,还会出现孔板脱落难以取出.必须停产维修的局面。(4)当天然气处理不干净时,其中的粉尘、水化物等对孔板有很强的冲刷腐蚀作用,会在孔板表面形成麻点,使直角边变钝,因此,孔板应经常检查更换,否则准确度会降低。(5)差压变送器零点漂移除了与仪表本身的稳定性有关外,,导压.管带液也会造成很大的影响。由于孔板流量计的流量和差压值成开方关系,差压变送器的零点出现正负漂移会直接造成积算流量偏大或偏小。(6)流量计算机中一些关键参数输入不正确或更新不及时。比.如,孔板开孔直径是以平方的形式出现的,由于孔板开孔直径会随季节和运行时间发生变化,一-定要定期测量孔板的开孔直径,并在流量计算机中及时更新。 天然气组分变化不仅影响相对密度,还影响超压缩系数。对于没有在线色谱仪的计量系统,,在组分变化不大的情况下流量计算机中一般每周输入-周天然气组分的平均值,但在天然气组分变化很大的情况下,每天都要对天然气组分进行化验.更新。2提高天然气计量准确度的应对措施(1)定期清洗检查孔板。比如孔板流量计光洁度直角边锐利度、胶圈变形情况、孔板开孔直径等。在正常的生产情况下。每月清洗检查-次,在出现不正常的情况下,视情况加密检查次数。(2)对流量计前过滤器每两小时排污一次,每月清洗过滤器芯--次。(3)正确输入计量参数并及时更新.按时校验变送器零点。另外,在气量波动较大的情况下,及时调节差压变送器量程,使测量值尽量在量程的1/3-2/3之间,以保证测量准确度。在测量值超出变送器最大、最小量程范围时,要考虑更换合适孔径的孔板。电磁流量计在结构上由传感器和转换器组成,其中传感器部分是检测出感应电压信号,也即是流量信号,经过信号传输线送给转换器;转换器部分主要起到处理流量信号,转换成可供显示仪、记录仪、计算机等处理的标准电信号。其结构示意图如图4-1所示。 电磁流量计传感器通过两端法兰,将它与被测流体所在的管道连接,安装在测量管道上。它是电磁流量计流量测量部分,在设计过程中,它应满足如下作用:(1)能够将流量信号转换成电压信号;(2)通过对转换器合理的设计,使无可避免的干扰所带来的不利影响减少到最小程度,最大程度的提高流量信号的信噪比;(3)在选择材料方面,尽量能够满足工业现场的要求,包括工业环境和电气属性等等。 电磁流量计转换器不仅仅给电磁流量计提供励磁电流,而且能够接收传感器测量的感应电动势信号,将该信号滤波、放大并转换为标准的电流电压信号,以能够在显示仪表、控制仪表和计算机网络实现对流量的远距离调控、监测、计算。 电磁流量计原型样机由10种元件组成,表4-1罗列出原型样机的元件清单,给出元件的参数,在装配图中标注出每一个元件的编号与位置,如图4-2所示,并作出了测量管道的三视图。权函数求解系统基础设计主要对管道、电极、励磁线圈进行设计,因为这三个方面的选材与设计直接决定了电磁流量计测量系统的精确度,影响到权函数的实验求解结果,同时在对管道、电极和励磁线圈设计时,要和COMSOL Multiphysics仿真模型中三者的尺寸和位置相一致,以达到权函数实验求解验证仿真求解的目的。 涡街流量计是基于流体力学中著名的“卡门涡街”研制的。在流动的流体中放置- -非流线型柱形体,称旋涡发生体,当流体沿旋涡发生体绕流时,会在涡街发生体下游产生两列不对称但有规律的交替旋涡列,这就是所谓的卡门涡街,如图1所示。 大量的实验和理论证明:稳定的涡街发生频率ƒ与来流速度v1及旋涡发生体的特征宽度d有如下确定关系叫: 式中St为斯特罗哈数,与雷诺数和d相关。 当雷诺数Re在一定范围内(3 X102~2 X105)时(4],St为一常数,对于三角柱形旋涡发生体约为0.16 雷诺数的定义为 式中S为管道的横截面积。 由高精度气体涡街流量计的测量原理可知,通过测量旋涡发生频率仅能得到旋涡发生体附近的流速vI,由式(3)可知在横截面积一定的情况下,流体的流量Q与流体的平均流速v成正比,因此要精确计量流体的流量必须找到`v与v1的对应关系。 根据流体力学理论,在充分发展的湍流状态下,流体的速度分布有如下关系式川: 式中:vp为到管壁距离为y的P点的速度;y为点到管壁处的距离;Vmax:为管道中的最大流速,通常取管道中心的速度;R为管道的半径;n为雷诺数的函数。 表1中给出了部分雷诺数与n的对应关系。 由于旋涡发生体的位置固定,因此当雷诺数一定时v1与`v有固定的比例关系换言之,当雷诺数Re变化时,二者的比值也发生变化, 图3给出了不同雷诺数下充分发展的湍流的流速分布,如图所示Re越大,流速分布越平滑,即旋涡发生体附近的流速越接近平均流速,故ƒ( Re)应为单调递减函数。图4给出了3台50mm口径,宽度14 mm三角形旋涡发生体的气体涡衔流量计,在20℃,一个标准大气压下,不同雷诺数下的K值曲线。如图所示实验数据与理论分析基本一致,因此涡衔流量计的测量原理即决定了仪表系数的非线性特性。若要提高涡街流量计的计量精度,必须针对不同的流速分布对K值进行修正。德国VSEAR800流量计联系1.机械干扰 在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确性。2.紫外线的伤害 由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3.感应探头易损坏 旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。
您如果需要德国VSEAR800流量计联系的产品,请点击右侧的联系方式联系我们,期待您的来电