欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAPE流量计销售厂家

发布时间: 热度:
德国VSEAPE流量计销售厂家同时我们还经营:金属管浮子流量计安装要求:1、实际的系统工作压力不得超过金属管浮子流量计的工作压力.2、应保证测量部分的材料、内部材料和浮子材质与...

德国VSEAPE流量计销售厂家同时我们还经营:金属管浮子流量计安装要求:1、实际的系统工作压力不得超过金属管浮子流量计的工作压力.2、应保证测量部分的材料、内部材料和浮子材质与测量介质相容;3、环境温度和过程温度不得超过金属管转子流量计规定的最大使用温度;4、金属管转子流量计必须垂直地安装在管道上,并且介质流向必须由下向上;5、金属管浮子流量计法兰的额定尺寸必须与管道法兰相同.6、为避免管道引起的变形,配合的法兰必须在自由状态对中,以消除应力;7、为避免管道振动和最大限度减小金属管浮子流量计的轴向负载,管道应有牢固的支架支撑;8、截流阀和控制流量都必须在金属管浮子流量计的下游.9、支管段要求在上游侧5DN,下游侧3DN(DN是管道的通径);  涡街流量计是基于流体力学中著名的“卡门涡街”研制的。在流动的流体中放置- -非流线型柱形体,称旋涡发生体,当流体沿旋涡发生体绕流时,会在涡街发生体下游产生两列不对称但有规律的交替旋涡列,这就是所谓的卡门涡街,如图1所示。   大量的实验和理论证明:稳定的涡街发生频率ƒ与来流速度v1及旋涡发生体的特征宽度d有如下确定关系叫:   式中St为斯特罗哈数,与雷诺数和d相关。   当雷诺数Re在一定范围内(3 X102~2 X105)时(4],St为一常数,对于三角柱形旋涡发生体约为0.16   雷诺数的定义为   式中S为管道的横截面积。   由高精度气体涡街流量计的测量原理可知,通过测量旋涡发生频率仅能得到旋涡发生体附近的流速vI,由式(3)可知在横截面积一定的情况下,流体的流量Q与流体的平均流速v成正比,因此要精确计量流体的流量必须找到`v与v1的对应关系。   根据流体力学理论,在充分发展的湍流状态下,流体的速度分布有如下关系式川:   式中:vp为到管壁距离为y的P点的速度;y为点到管壁处的距离;Vmax:为管道中的最大流速,通常取管道中心的速度;R为管道的半径;n为雷诺数的函数。 表1中给出了部分雷诺数与n的对应关系。   由于旋涡发生体的位置固定,因此当雷诺数一定时v1与`v有固定的比例关系换言之,当雷诺数Re变化时,二者的比值也发生变化,   图3给出了不同雷诺数下充分发展的湍流的流速分布,如图所示Re越大,流速分布越平滑,即旋涡发生体附近的流速越接近平均流速,故ƒ( Re)应为单调递减函数。图4给出了3台50mm口径,宽度14 mm三角形旋涡发生体的气体涡衔流量计,在20℃,一个标准大气压下,不同雷诺数下的K值曲线。如图所示实验数据与理论分析基本一致,因此涡衔流量计的测量原理即决定了仪表系数的非线性特性。若要提高涡街流量计的计量精度,必须针对不同的流速分布对K值进行修正。一.和其它流量计一样, 虽然电磁流量计它的测量范围比是30:1, 比涡街流量计和差压式流量计都要高, 但也是有限制的,许多客户定表时,常常把它和水表相比较,以为可以测量很低的流速,一般情况下,它只能测0.1m/s.低于此流速电磁流量计就很难正确测量.所以定货初期对流量范围比要搞清楚.定货时不能按原先管道口径来定货,最好按你实际流量来定仪表口径。二.和其它流量计一样,电磁流量计对安装前后直管道也有要求,只不过比其它类流量计要求更低,但最关健一点要满足:就是满管, 再满管.不满管的情况下容易引起流量计乱跳:三.和其它流量计一样,电磁流量计也有防护等级,一般一体式的防护等级为IP65,分体式的为IP68(针对传感器而言), 如果客户对仪表安装环境有要求,安装地点在地下阴井或其它一些潮湿的地方,建议客户选用分体式的.以免选错对仪表造成损害。四.电磁流量计可以测腐蚀性液体,但定货初期客户要正确提供其它测量介质属性,以免选型时对电极选型上的错误,导致传感器在后期使用过程中报废,给客户带来不便和经济上的损失。五.电磁流量计虽说可靠性比较好,一般情况下不会损坏,但由于其原理决定,传感器电极表面一直和液体接触,时间久了,电极表面比较容易受污染。所以电磁流量计一般情况下,客户有条件拆的情况下,建议一年到一年半之间拆出来清洗一次电极以保证流量计整机的测量精度。任何仪器仪表都是需要“保养”的,电磁流量计也不例外。六.在主管线是垂直管线时,一般情况下,要求水流是自下而上,尽量不要自上而下。后者容易引起流量波动比较大。安装除了满管以外,这点也是很重要的,其次就是前后直管道的距离了。1.传感器设计  设计先进的传感器。涡街流量计传感器电容极板的基体在高度下成型。抗高压特性,使核心元件的内部结构提升。现代流场分析技术。对传感器的具体结构以及安装位置进一步改进,增强抗振性能,可以消除各个方向的干扰,搅动,使涡街在流动情况下的抗干扰能力,时域毛刺快乐,频城户外活动稳定。频带能自动跟踪,无须电位器或拨动开关调整频带和灵敏度,无零漂移,量程自由设定,真正实现现场免调试。2.先进性现场总线设计  采用全数字化现场总线的智能涡街流量计。目前,研究现场总线技术是智能仪表的焦点。可以考虑实际需求,增加HART总线接口,该模块采用抗干扰能力强,通信速率高,数据精确高的电路来完成传输数据,它真正RS .485总线通信的抗干扰能力强的特点,又具有输出信号为二线制4~20mA的工业标准,根据各自的通讯,完成HART协议数据协议层和应用层的设计,实现HART总线通信功能.3.先进的数字信号处理方法的设计  应用更先进的数字信号处理方法,能更好地解决干扰问题,提高测量精度,进一步提高的敏感信号与涡街信号在频谱的现场研究,当两种信号频率在研究同一频段且频率非常接近时,无法检测到这两种信号和消除噪声信号的作用,对涡街信号分析的干扰等。塑料则,吸收它分频特性好,会造成光纤精度高。同时,靠近涡街频率的微细滤网,将影响测量精度,还需要研究函数的选择、因此,瀑布幅频特性和中心频率的如何调整频率和采样点数确定,以及在软件编程中如何优化算法,使量少、内存占用量少和性能小,以保证体积小。实时性好和计算精度高等问题。研究强干扰噪声不为基础创建噪声的模板,考虑建立--种通用的模板,真正解决干扰下涡街信号和噪声的判别、分离及提取问题,在传感器条件一定的情况下,考虑利用信号处理技术扩大流量程比,提高小测量精度,全面深入研究流场噪声以及他们对涡街流量计信号影响等。  智能金属管浮子流量计的软件设计采用模块化编程结构,主要包括三个部分:输入模块、控制模块、输出模块。所有程序代码均采用C语言编写。  输入模块主要包括数据采集、滤波、温度补偿、非线性补偿和数值计算等,总体采用定时器中断方式,程序流程图如图2所示。输入模块中的非线性补偿程序采用分段线性拟合的方式来实现。通过采集9组或11组流量信号,作为拟合直线的端点,当前采样值按数据大小得到拟合曲线段的斜率和初始数据,代入拟合方程即可得到修正后的流量数据。  控制模块包括键盘处理程序和看门狗程序,键盘处理功能是通过中断方式设置标志位在置入参数子程序中实现的。金属管浮子流量计在通过总线组网,实现.上位机组态调试的同时,通过键盘,可以就地调试。  输出模块包括显示程序和通信中断服务程序。通信中断服务程序流程图如图3所示。涡街流量计由壳体、漩涡发生体和放大器组成.一种典型的结构如图4所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号.  涡街流量计是一种无运动部件的流量计,按其原理分类属于振荡型流量计.同属于这类流量计还有漩涡进动型流量计;振荡射流型流量计.由于涡街流量计不含有运动部件及对流体冲刷敏感的部件,因而在使用过程中,可靠性高,使用寿命长,并具有一般节流式流量计的优点,精确度稳定,再现性好.在大批量生产和工艺稳定的条件下,可以采用“干校验法”,即不必逐台仪表进行实液标定,可根据结构尺寸直接确定仪表常数及仪表精度.涡街流量计是‘种数字式流量计,它输出的脉冲信号的频率与流量成线性关系,同时具有量程宽、重复性好.便于远距离无精度损失的传输.此外仪表常数及精度不受介质的压力、温度、密度等变量的影响.一旦涡街流量计的结构确定.流体振荡就服从的客观规律,其振荡频率不能人为地改变,因而仪表常数及其变化规律是客观的.优点:(1)热式气体质量流量计可被测量的流体管道口径范围广.能够应用在各种口径的管道流量测量,从小、中口径到特大口径管道都可以,口径可达 9000mm.(2)流速测量范围广.可测量 0.02m/s~480m/s 范围内的流体流速.(3)测温范围和耐压范围很宽.待测气体的温度高达 900℃,可用于各种高温过程气体的测量,最高可以在 70MPa 的压力下进行测试.测量过程中不需要温度和压力补偿.所以在较大直径管道、较小流速、微小流量、测量流量浮动范围较大时,具有一定的优势.(4)可保证较高的测量精度.一般的热式气体质量流量计都属中等精度测量范围,其中部分仪表,如插入式、电磁式,可以达到高精度测量.国外进口的高精度仪表满量程误差可以达到±1%.(5)宽量程比.量程比可以达到 1000:1,且能保持精度要求.(6)可测量混合气体.(7)机械设计简单,容易安装和调试,维修简单,防振动.插入式只需要在管道上焊接法兰盘即可,管段式只需要进行管道转接,安装和操作方便.(8)不需要温度和压力补偿.缺点:(1)响应速率慢.由于热式气体质量流量计是依靠传热原理设计,而热量交换过程与加热温度探头和流体的热传导效率密切相关,需要一定的时间来完成换热过程,一般的相应时间为 2~5s;性能优越的流量计响应时间为 0.5s;甚至有些响应时间更慢.(2)精度易受流体组分影响.当被测流体为混合气体时,由于混合气体组分的变化,气体密度,粘度,热导率都会受到直接影响,使测量值发生较大误差而导致最后的流量计算结果产生误差.(3)在小流量测量中,热源探头的温度高于流体温度,导致热源探头向流体传导热量,影响流体和热源探头的温度差,影响测量精度.德国VSEAPE流量计销售厂家1.从经济方面考虑购置流量计的费用  购置流量计时应比较不同类型流量计对整个测量系统经济的影响.例如,范围度小的流量计比范围度宽的流量计在相同测量范围下,需要多台流量计并联和多条管线才能覆盖,因此除流量计外还需增加许多辅助设备(如阀门、管线附件等).虽然表面上看流量计费用少了,但是其他费用则增加了,两者加起来也许并不合算.例如,安装孔板流量计加上差压计的费用相对便宜,但组成测量回路包括孔板的固定附件等其他费用,可能超过基本件费用很多.2.安装费用  在购置流量计时,不仅要考虑流量计的购置费,还需考虑其他费用,如附件购置费、安装调试费、维护和定期检测费、 运行费和备用件费.例如,许多流量计使用时应配备比较长的上游直管段以保证其测量性能.因此,正确的安装需要额外布置管道或备有旁路管道作定期维护.所以安装费应多方面考虑,例如,还应包括运行所需的截止阀、过滤器等辅助费用等.3.运行费用  流量计运行费用主要是工作时能量消耗,包括电动仪表内部电力消耗或气动仪表的气源耗能以及在测量过程中推动流体通过仪表所消耗的能量,亦即克服仪表因测量产生压力损失的泵送能耗费等.比如差压式流量计产生的差压,很大一部分不可恢复; 容积式流量计和涡轮流量计也具有相当阻力.只有全通道、无阻碍的电磁流量计和超声流量计此费用基本为零.插入式流量计由于用于大管径阻塞比小,其压力损失亦可忽略.据测算,管径为lOOmm的差压式孔板流量计1年泵送能耗费与流量计购置费相当, 如果换用电磁流量计,其购置费仅相当于4年多差压式孔板流量计的能耗费.可想而知,管径越大,泵送能耗费占总费用的比例越高.一般认为超过5000mm的流量计应尽可能选用低压损和无压损的流量计.例如,供水工程通常采用低压损的文丘里管等差压式传统流量计,而极少用孔板,现在则更新为电磁流量计和超声流量计.4.检测费用  检测费用应根据流量计的检定周期决定.一般用于贸易结算的原油或成品油的检测,常在现场设置标准体积管对流量计进行在线检定.5.维护费用和备用件费用等  维护费用为流量计投入使用后保持测量系统正常工作所需费用,主要包括维护费和备用件费.有运动部件的流量计需进行较多维护工作,如定期调换易磨损轴承、轴、转轮、传动齿轮等;没有运动部件的流量计也需进行检视,如最普通的用几何测量法检查差压式流量计.备用件费用会随着流量计性能提高的程度而增加.选用流量计时应考虑同时增加备用件的购置费用,尤其是从国外进口的流量计,有时常会因易损备件的购置问题而替换整台流量计.1.正确选择外夹式超声流量计测量点和进行准确的管道参数测量发射器安装位置的选择遵循以下原则:选择充满流体的管段,如流体上流的垂直管段或完全水平的管段;测量点位置应远离弯管段、通、节流阀、阻尼孔、缩径管段或其它会引起紊流的管段,至少有10D管径的上游直管段和5D的下游直管段。对在泵、控制阀或套管弯曲段后的测量点,为保证更佳精度,其上游直管段长度会要求长达30D任何地方的测量点,一般只需5D的下游直管段。在水平管段上,发射器一般安装在管侧面的正側线上(以避免管道底部沉淀物或管道部的气泡、气穴引起信号丢失)。注意保证管表温度不超出发射器的额定工作温度。zui好选择内部没有腐蚀或锈斑的管段,减少测量的困难和不准确性。如不能完全按以上选点要求进行,仍有可能获得流量测量信号,但信号较弱,精度会降低。(注:D为被检流量计标称口径。)2.超声波探头的安装  选择合适的发射器安装测量点后,对超声流量计进行设置,根据管径的大小,选择合适的安装方法。当被检流量计标称口径≤200m时采用V法测量,标称口径>200m时采用Z法安装。将发射器安装选定的位置清洁干浄并去掉上面的锈斑剥皮和油漆,注意在水平测量管道发射器须安装在3点和9点位置。因为管道内上部位置往往聚有气泡或气穴,低部又集有沉淀物,从而引起信号丢失。将耦合剂沿纵长方向涂在每个发射器发射面的中央位置上。注意安装发射器时要将耦合剂进行挤压保证发射器和管表之间无气泡存在。用不锈钢带或尼龙带将发射器紧固在管表测量位置注意让发射器中线与管侧接触中线保持水平。超声流量计测量探头安装时,应根据管道水流方向以及两个探头上的流向标志正确安放上游发射器和下游发射器。3.其他干扰的排除  在周期性比对测试中,每次测量点应固定的永久性测量点。在比对测试完成后,在超声波探头的四周管壁涂刷防腐漆,取下超声波探头后在安装位置抹上黄油,并贴上一块塑料布,用以保护测量点。下次测量时,取下塑料布,擦掉黄油,用手锤击打测量点,将管道内壁新近结垢震掉,按防腐漆所留下的标记装上换能器即可测量,方便准确。若声波信号接受很弱或时有时无,则可能是管道内壁结垢太厚,或者是管内含有大量气体,使声波经常被阻断所致。可先用手锤击打测量点,如果接受的信号强度不断上升,说明是管壁结垢引起。如击打无效,则多为管内含有大量气体所致,排除气体即可。此外。还可以改变便携式超声波流量计探头安装位置或方式,探测现场管段流动状况。例如,沿着管圆周移动两换能器,核对所测不同位置的线平均流速,zui大流速处可能就是zui接近实际的平均流速位置,因为在最不对称位置的流速畸变所形成的平均流速读数最小。比较探头按Z法和V法安裝所测得的流速,如两者相差很大,表明存在严重横向流动,也就是有旋转流的迹象,应引起注意,采取措施。总之,用便携式超声波流量计对在线电磁流量计进行比对测试,只要准确操作,尽量减少随机误差和附加误差,基本上可以对外夹式超声流量计现场测量的稳定性和重复性作一个大致的定性评估。对于确实测量不稳定、精确度和稳定性偏差较大的长期现场应用的电磁流量计可以及时检测出来,从而采取更精确和更有针对性的方法和措施,满足现场计量和测试的需要。通常对电磁流量计传感器进行分析时将侧壁上的两个电极看做点电极,但实际上它也是有一定的尺寸,两个电极与被测液体接触时有一定的电阻,这就是信号源的内阻。信号源内阻和放大电路输入阻抗共同组成分压电路,为了减少传感器信号电压损失,需要放大电路的输入阻抗远远大于信号源内阻,这样才能最大限度减少测量误差。  信号源内阻模型如图2.2。管道侧壁装有一对点电极,电极为圆柱形,电磁流量计直径为d,两电极间距为D,即管道内径,被测液体电导率为σ。假设管道足够长,电极与被测液体的阻抗用圆板电极与半无线宽流体接触的模型计算。电极与被测液体1/2dσ, 由于管道直径远大于电极直径,信号源内阻为两电极与被测液体的接触电阻之和即1/dσ。可见电极大小与被测液体电导率决定了信号源内阻。通常被测液体电导率从10S/m到10-6S/m,电极大小为cm级,这样信号源内阻从十几欧到几百兆欧。性能特点  设计发明的新型孔板流量计整流器的优势主要在于提取、安装整流管的过程中无需截断流体或置换流体管路,实现在线维护整流器。此外,设计驱动装置使整流管在上下阀腔内穿梭时,可实现整流管两端同步升降,使整流器安装与拆卸快捷、简便。整个维护过程可避免高压流体给现场操作人员带来伤害,同时也解决了清洗、更换整流器时需要停产的问题。  通过上阀腔齿轮轴、滑板阀、下阀腔齿轮轴的配合就可移动管腔内的整流管(板),取出与安装归位的整个过程简单、平稳、快捷,实现了在线维护整流器,减少天然气或有毒有害气体与操作人员的接触,消除了潜在的危险。使用方法  孔板流量计装置工作前,首先对密封性进行检查,保证其处于安全工作状态。工作时主要包括整流管(板)平稳提升、整流管(板)安全取出以及整流管(板)安装归位三个部分。整流管(板)平稳提升:打开平衡阀,使上阀腔与下阀腔连通,从而平衡上阀腔与下阀腔内的压力。其次,打开滑板阀,驱动下阀腔齿轮轴,将整流管(板)从下阀腔移至上阀腔,接着关闭滑板阀,关闭平衡阀。整流管(板)安全取出:打开放空阀,上阀体通过放空通孔与外界大气连通,使上阀腔与外界的压力平衡。打开顶丝,取出顶板、压板。驱动上阀腔齿轮轴,将整流管(板)从上阀腔取出。整流管(板)安装归位:将整流管(板)放入上阀腔,驱动上阀腔齿轮轴,将整流管(板)下放上阀腔底部为止。盖好压板、顶板,安装顶丝,关闭放空阀。打开平衡阀,使上阀腔与下阀腔内的压力平衡。打开滑板阀,驱动下阀腔齿轮轴,将整流管(板)从上阀腔移至下阀腔。关闭滑板阀,关闭平衡阀。打开放空阀,将上阀腔气体放空,确保上阀腔内部压力平稳,最后关闭放空阀。电磁流量计未输出流量信号故障问题,通常是因电缆或电源故障、管道内部没有充满流体介质、液体相反流动方向等因素所致。对于以上可能会引发故障问题因素,需对仪表的电源供电与电缆连接情况做好细致检查,并对管道内部测量流体的介质流动方向正确与否、管道是否充满等实施细致检查。电磁流量计具体运行期间,需确保仪表内部所测定流体流动为正确方向,要和壳体上方箭头方向相一致。流体介质并没有充满管道大部分是因传感装置安装位置或者测量管网位置并未与设计安装实施标准相吻合。如图1所示,c、d位置处为传感装置最佳安置位置;细致检查传感装置器件完整性、测量管道内壁期间,需注重对传感装置重点零部件、各个接线端完好性的检查。仪表若未输出流量信号,也会因转换装置故障问题所致,可及时将线路板替换好,做好转换装置故障排查工作。较低流量与仪器参数设定期间,小信号较高切除设定,流量一边会有不显示现象产生。对此,务必注重对此方面故障问题的检查分析及有效排除,及时做好相关零部件更换处理,保证整个仪器可维持良好运行状态。德国VSEAPE流量计销售厂家用于动流测量的电磁流量计,通常在下列三个方面须作特殊设计,并在投运时作适当的调试.1.激励频率可调,以便得到与动频率相适应的激励频率.太和太低都是不利的.2.电磁流量计的模拟信号处理部分应防止动峰值到来时进入饱和状态.动流的动峰值有时得出奇,如果峰值出现时,电磁流量计的流量信号输入通道进入饱和状态,就如同峰值被消除,必将导致仪表示值偏低.3.为了读出平均值,应对显示部分作平滑处理.由于电磁流量计的测量部分能快速响应动流流量的变化,忠实地反映实际流量,但是显示部分如果也如实地显示实际流量值,势必导致显示值上下大幅度跳动,难以读数,所以,显示应取段时间的平均值.其实现方法通常是串入惯性环节,选定合适的时间常数后,仪表就能稳定显示。但若时间常数选得太大,则在平均流量变化时,显示部分响应迟钝,为观察带来错觉.动流流量测量方法有三种:a.用响应快的电磁流量计;b.用适当的方法将动衰减到足够小的幅值,然后用普通流量计进行测量;c.对在动流状态下测得的流量值进行误差校正.  有的系统中,b c两种方法需结合起来才能实现测量,这是因为动幅值大,出估算公式的适用范围,若仅用阻尼方法,衰减后的动幅值又未能进入稳定流范围。1、孔板流量计包括3部分:①现场取压部分,包括高级孔板阀、前后直管段、导压管;②温度、压力、组分补偿部分,包括现场用温度变送器、压力变送器、天然气组分分析仪计量的实时数据;③流量计算部分,指专用流量计算机(或计算仪)所安装的计量标准程序。 2、在实际应用过程中,当充满管道的流体流经管道内的节流件时,如图1所示。   流线将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来:衡量流量的大小。这种计量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。以伯努利方程式和流体流动的连续性方程式为依据,天然气流量计算公式是:   根据气体易压缩、密度差异大、受温度影响大的特点,得出天然气流量计量的实用公式是:式中:Qn一标准状态下气体体积流量; Ah一常数,标况下为0.008686; ɑ0一特定流量系数; Yre一计量管内壁流量修正系数; bk一孔板流量计入口边缘锐利度修正系数; Fr一雷诺数修正系数;. ε一气体膨胀系数; d-孔板在20°C下实测的开孔口径; Fa一孔板热膨胀修正系数; Fg一天然气相对密度修正系数; Fz一超压缩系数; Ft一流体流动温度修正系数; P1一孔板上游侧绝对压力; hw一气体流过孔板时的差压。

您如果需要德国VSEAPE流量计销售厂家的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网