欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAHM01流量计样本

发布时间: 热度:
德国VSEAHM01流量计样本同时我们还经营:孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系: 式中:qm为质量流量,kg/h;qv为工况条件下的体积...

德国VSEAHM01流量计样本同时我们还经营:孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系:   式中:qm为质量流量,kg/h;qv为工况条件下的体积流量,m³/h;x为流量系数;e为流束膨胀系数;△e为差压,Pa;Q为工况条件下被测流体的密度,kg/m³;d为工况条件下的节流开孔直径,mm。由(1)式和(2)式可以看出,被测流体的流量是流体的密度和孔板前后差压的函数。当测得某一差压时,由于所测流体的密度不同,所代表的流量是不同的,只有当流体的密度值等于孔板流量计设计条件中的密度值时,差压才能真实反映所测的流量。蒸汽从发生到使用,由于热损耗,温度和压力的下降是不可避免的,导致其密度与设计值的差异,从而产生了误差,并且随着蒸汽参数的波动而波动,实际测量时只能通过温压补偿来修正,补偿公式的严谨性直接影响测量误差。涡轮流量计作为速度式仪表,以动量矩守恒为基础,涡轮流量计基本力矩平衡方程为[1]: 式中 Tb一轴与轴承的粘性摩擦阻力矩(流动产生的力矩); Td一涡轮流量计转动的驱动力矩; Th一轮毂表面的粘性阻力矩; Tm一磁电阻力矩和轴与轴承的机械摩擦阻力矩之和; T1一叶片顶端与传感器外壳的粘性摩擦阻力矩; Tw一轮毂端面粘性摩擦阻力矩; J一涡轮的转动惯量; ɷ-涡轮转动的角速度。   当流速较低时,涡轮流量计处于静止状态,此时角速度ɷ非常低,接近于0,Tb和Tw也可以忽略不计。在这种情况下,式(1)可以简化为:   由式(2)可以看出提高驱动力矩是降低涡轮流量计启动排量的一-条捷径。如图1所示,传统涡轮流量计入口端是直管段和轴向导流片,流体流经涡轮叶片之前只有轴向速度,对涡轮的驱动力矩只是对涡轮叶片作用力的径向分力产生的力矩。因为涡轮叶片螺旋角为45°,如果将导流片改为螺旋角为-45°的螺旋导流片(图2),当流体进入导流片时会产生旋转,方向与涡轮叶片正交,使得流体在轴向流动速度不变的基础上增加了径向的旋转运动,流体的旋转方向与涡轮叶片的转动方向一致,在相同流量条件下,增加了流体对涡轮叶片的驱动力,实现降低启动排量和提高分辨率的目的,整体结构如图3所示。vse流量计德国VSEAHM01流量计样本1.正确选择外夹式超声流量计测量点和进行准确的管道参数测量发射器安装位置的选择遵循以下原则:选择充满流体的管段,如流体上流的垂直管段或完全水平的管段;测量点位置应远离弯管段、通、节流阀、阻尼孔、缩径管段或其它会引起紊流的管段,至少有10D管径的上游直管段和5D的下游直管段。对在泵、控制阀或套管弯曲段后的测量点,为保证更佳精度,其上游直管段长度会要求长达30D任何地方的测量点,一般只需5D的下游直管段。在水平管段上,发射器一般安装在管侧面的正側线上(以避免管道底部沉淀物或管道部的气泡、气穴引起信号丢失)。注意保证管表温度不超出发射器的额定工作温度。zui好选择内部没有腐蚀或锈斑的管段,减少测量的困难和不准确性。如不能完全按以上选点要求进行,仍有可能获得流量测量信号,但信号较弱,精度会降低。(注:D为被检流量计标称口径。)2.超声波探头的安装  选择合适的发射器安装测量点后,对超声流量计进行设置,根据管径的大小,选择合适的安装方法。当被检流量计标称口径≤200m时采用V法测量,标称口径>200m时采用Z法安装。将发射器安装选定的位置清洁干浄并去掉上面的锈斑剥皮和油漆,注意在水平测量管道发射器须安装在3点和9点位置。因为管道内上部位置往往聚有气泡或气穴,低部又集有沉淀物,从而引起信号丢失。将耦合剂沿纵长方向涂在每个发射器发射面的中央位置上。注意安装发射器时要将耦合剂进行挤压保证发射器和管表之间无气泡存在。用不锈钢带或尼龙带将发射器紧固在管表测量位置注意让发射器中线与管侧接触中线保持水平。超声流量计测量探头安装时,应根据管道水流方向以及两个探头上的流向标志正确安放上游发射器和下游发射器。3.其他干扰的排除  在周期性比对测试中,每次测量点应固定的永久性测量点。在比对测试完成后,在超声波探头的四周管壁涂刷防腐漆,取下超声波探头后在安装位置抹上黄油,并贴上一块塑料布,用以保护测量点。下次测量时,取下塑料布,擦掉黄油,用手锤击打测量点,将管道内壁新近结垢震掉,按防腐漆所留下的标记装上换能器即可测量,方便准确。若声波信号接受很弱或时有时无,则可能是管道内壁结垢太厚,或者是管内含有大量气体,使声波经常被阻断所致。可先用手锤击打测量点,如果接受的信号强度不断上升,说明是管壁结垢引起。如击打无效,则多为管内含有大量气体所致,排除气体即可。此外。还可以改变便携式超声波流量计探头安装位置或方式,探测现场管段流动状况。例如,沿着管圆周移动两换能器,核对所测不同位置的线平均流速,zui大流速处可能就是zui接近实际的平均流速位置,因为在最不对称位置的流速畸变所形成的平均流速读数最小。比较探头按Z法和V法安裝所测得的流速,如两者相差很大,表明存在严重横向流动,也就是有旋转流的迹象,应引起注意,采取措施。总之,用便携式超声波流量计对在线电磁流量计进行比对测试,只要准确操作,尽量减少随机误差和附加误差,基本上可以对外夹式超声流量计现场测量的稳定性和重复性作一个大致的定性评估。对于确实测量不稳定、精确度和稳定性偏差较大的长期现场应用的电磁流量计可以及时检测出来,从而采取更精确和更有针对性的方法和措施,满足现场计量和测试的需要。  高流速时,电磁流量计中的流体为湍流,且雷诺数越大,流体小尺寸结构越小。但流体整体向前的流速不会因为湍流而减小,这样的情况下可知电磁流量计流体中的非导电物体的尺寸更小。当含水率不变,非导电物体物质半径变小后对电磁流量计的整体流速分布不变、对流量计的磁场分布影响较小。根据式(1)可知,电磁流量计中非导电物质的半径大小对流量计的权重函数是有影响的。  当电磁流量计中心横截面内含有M(M=0,1,2.,-.)个油泡时传感器的权重函数分布情况,本文算例设定M=3权重函数分布情况计算方式。图1为电磁流量计传感器截面内存在3个球形油泡时的结构模型图。其中,x轴与y轴与图1描述--致,图1中只显示了测量区域部分,测量区域流体中存在3个油泡。y正半轴、负半轴与管壁的交点是流量计的电极位置。  图1中3个油泡相互不重叠,此时传感器内部感应电势仍满足Laplace方程。为了对该问题进行求解,需建立2种坐标系,一种是以传感器中心为原点建立的二维直角坐标系(x,y),另一种是以各个油泡中心为原点建立的M个二维极坐标系(ri,θi)。首先在二维直角坐标系下对该问题进行求解(本例M=3),求解感应电势方程时需借用一个辅助的格林函数G,G满足Laplace方程且边界条件  式中,R为电磁流量计半径的长度值;მG/an为电势在半径方向上的导数;δ(θ)为电势G在流量计管壁处所满足的条件,其值仅在电极表面处不为0。当流体中存在油泡时,G表达式为   式中,R为测量管的半径;x与y分别表示测量区域中的位置。  当电磁流量计流体中存在3个油泡时,G=G+G1+G2+G3图2显示了流量计流体截面中存在3个不重叠的油泡时,流量计截面内部权重函数wy分布图;从式(2)以及仿真图中可以发现油泡所在位置权重函数值是0。当然,存在多个油泡分布在不同位置流体中时权重函数分布情况也可以用上述方法计算。  仿真实验中,设定不同大小的非导电物质对电磁流量计权重函数进行仿真,如图3所示为不同大小非导电物质对电磁流量计权重函数的影响。图3中左边的分别为权重函数分布图,右边分别为权重函数等势图,其中R单位为cm。从图3中可见,当电磁流量计中的非导电物质半径越来越小,对电磁流量计的权重函数的影响就越小。  为了更清楚地揭示电磁流量计的权重函数与流量计中非导电物质半径之间的关系,定义c为非导电物质对流量计权重函数的影响的评价指标式中,Wxy为含有油泡等非导电物质时电磁流量计在测量区域坐标(x,y)的权重函数;Wxy0为电磁流量计不含非导电物质时测量区域坐标(x,y)的权重函数;A为权重函数区域(测量区域)。  图4为不同大小非导电物质对流量计权重函数的影响分析图。图4中横轴为非导电物质半径,纵轴为权重函数的影响因子c。从仿真结果可以看出流体中的非导电物质半径较小时,对电磁流量计的权重函数影响越小。在本例中,当流体中非导电物质小于0.02R时,对电磁流量计的权重函数分布几乎没有影响。涡轮流量计采用双排液晶现场显示,具有机构紧凑、读数直观清晰、可靠性高、不受外界电源干扰、抗雷击、成本低等明显优点。广泛用于测量封闭管道中与不锈钢1Cr18Ni9Ti、2Cr13及刚玉Al2O3、硬质合金不起腐蚀作用,且无纤维、颗粒等杂质。    涡轮流量计结构为防爆设计,可以显示流量总量,瞬时流量和流量满度百分比。电池采用长效锂电池,单功能积算表电池使用寿命可达5年以上,多功能显示表电池使用寿命也可达到12个月以上。涡轮流量计的特点: 1、准确度高,一般可达±1%R、±0.5%R,高精度型可达±0.2%R。 2、重复性好,短期重复性可达0.05%~0.2%,正是由于具有良好的重复性,如经常校准或在线校准可得到较高的准确度,在贸易结算中是优先选用的流量计。 3、输出脉冲频率信号,适于总量计量及与计算机连接,无零点漂移,抗干扰能力强。  4、可获得很高的频率信号(3-4kHz),信号分辨力强。  5、范围度宽,中大口径可达1:20,小口径为1:10。  6、结构紧凑轻巧,安装维护方便,流通能力大  7、适用高压测量,仪表表体上不必开孔,易制成高压型仪表。  8、可制成插入型,适用于大口径测量,压力损失小,价格低,可不断流取出,安装维护方便。    涡轮流量计可以显示的流量单位众多,有立方米,加仑,升,标准立方米,标准升等,可以设定固定压力、温度参数对气体进行补偿,对压力和温度参数变化不大的场合,可使用该仪表进行固定补偿积算。1.仪表安装不符合要求造成计量误差  旋进漩涡流量计的使用过程中,最关键的是要保障计量的精度,安装质量是影响计量准确性、运行可靠性的重要因素。在实际的安装过程中,现场的安装人员往往会存在安装的不规范行为,而这种情况会导致计量的准确性不足,比如,在安装现场,仪表前后管线存在缩径现象,过近的安装距离会导致最终的计量结果偏大,计量与实际的误差非常大。此外,在安装过程中,安装人员的专业素质偏低,在实际的安装过程中,缺乏安装全过程的质量控制、细节管理,同样会造成严重的计量偏差。2.被测气量不稳定造成计量误差  旋进漩涡流量计的计量介质性质相对特殊,如果在实际的计量过程中,被测气量难以保持稳定性,将会影响计量结果的准确性。旋进漩涡流量计的运行过程中,存在着较大的压力损失,当在单井计量的过程中,伴随着一定气流量的产生,由于在此情况下气源的气体量相对较小,一旦气压降低到特定的值时,旋进漩涡流量计就无法及时将气量准确计量出来。在一些特殊的情况下,气量会随着时间呈现出或大或小的变动,而这种不稳定的变动趋势使得计量的难度系数增大,当属于脉动流体时,在计量过程中一旦出现随机脉动压力,将会对流量计造成一定的冲击,进而导致计量的精度不足。3.管线振动造成仪表误差  当流量很小的情况下,旋进漩涡流量计的计量结果难以保障。在实际的计量过程中,常常会存在工艺管道的振动现象,一旦在流速较小的情况下,流量计的仪表难以保持正常的输出状态,计量精度大大降低。旋进漩涡流量计使用过程中最常见的问题就是计量误差,这种误差常常是由多种因素所造成的,管线振动是其中的一个关键因素,当管线出现异常情况时,压电传感器能够活动振荡变化所引起的各种参数变化,此时,必然伴随着信号的输出,也就难以保障计量结果的准确性。4.不干净的测量流体介质造成计量误差  随着旋进漩涡流量计计量工作的开展,在流量计内必然会伴随着大量油污等杂物的存在,有时甚至会存在腐蚀与损坏现象,而这些情况会导致在计量过程中出现酸化与压裂现象的概率进一步增大,导致计量值远低于实际值。旋进漩涡流量计的计量工作中,要保障介质的洁净性,否则,一旦介质中存在饱和水蒸汽,当遇到温度过低的情况时,将会伴随着水凝结现象的出现。在计量过程中,如果计量分离器存在气路跑油的情况,在管线内会形成大量的积液;如果介质内存在污油、砂粒等杂质,在计量的过程中,可能会出现漩涡发生体表面杂质的黏结现象,最终影响计量结果的准确性。德国VSEAHM01流量计样本计量管路流量量程变化是实际使用中经常遇到的情况, 特别是直接对没有储气设备用户供气的计量更是如此。我国天然气、煤气的大部分消耗是供给城市作民用燃气的,一般日负荷的变化都比较大,流量的量程变化也就较大。常用孔板流量计的量程比一般为3:1,对于大量程比的场合,一般采用以下三种方法解决。(1)将大流量分段多路并联组合进行测量.在流量量程变化较大的场合,往往采用不同管径的计算管道并联组合,通过计量管路的组合切换来适应流量的变化;这是目前较为常用的方法。(2)更换孔板片改变值进行测量.在不改变标准孔板节流装置和差压计的情况下,通过更换不同开孔直径的孔板,改变孔径比的方法来实现流量测量。适用于较长时间的季节性流量较大幅度改变或供气量的突然变化致使差压计超出规定使用范围的情况。(3)用一台孔板流量计并联不同量程差压计进行测量.采用同一台孔板流量计的一次装置,并联两台或两台以上不同量程的差压计进行切换测量。根据高含水原油这一特殊介质及其使用环境的特点,对早期广泛应用于注水、注聚等计量中的电磁流量计进行了相关的技术改进。(1)对传感器进行防爆处理。通过现场应用进行综合分析,认为高含水原油的计量场所是油气密集的地方,需要对传感器进行防爆处理才能满足工作需要。根据传感器的特点及其使用环境的要求,选用了传感器的复合防爆型式,即浇封隔爆型,防爆标志为mdIIBT4.关键技术是传感器主体结构采用了浇封工艺技术、接线盒采用了隔爆外壳。接线盒的隔爆接合面为螺纹隔爆接合面,引人装置采用密封圈压紧螺母式,产品通过了国家防爆电气产品质量监督检验测试中心的5项试验。(2)提高转换器的输人阻抗,保证流量计的测量精度。对电磁流量计来说,传感器产生的感应电势只有几毫伏,如要进行准确测量,要求转换器的输人阻抗远远大于传感器的内阻,才能保证仪表的精度。电磁流量传感器的内阻仅与被测介质的电导率和电极直径有关。高含水油的电导率随含水情况有所变化,因此,采用了专用前置放大器,相应地提高了转换器的输人阻抗,保证了测量精度。(3)转换器实现智能化。智能电磁流量计采用了自动跟踪式励磁控制和智能反馈式信号放大处理技术,使用了多CPU协同信息处理的方法,使仪表在功能上具有了支持各种传感器匹配与校验、数字与模拟的系统连接、自诊断和安装调试测试、断电信息保护、在线信息查询、软件冲击自动恢复、多单位多形式的计量显示选择等全方位的智能化功能,操作使用十分方便。(4)改进型电磁流量计的主要技术指标。①适应的场所:转油站、联合站的高含水油计量,因为这些场所的高含水油经过油气分离,流态比较稳.定,含水波动较小,计量精度能够保证;②被测介质的含水率:>80%;③工作压力:≤2.5MPa;.④被测介质温度:≤100℃;⑤传感器衬里:可根据被测介质的温度选择不同的衬里。高含水油的温度一般在50~70℃,选择耐油橡胶衬里可满足计量要求;⑥口径依据被测液量的满量程流量来选择。电磁流量计的流速下限为0.5m/s。一般流量测量以2m/s为经济流速,而在高含水油测量时,流体的流速要求偏高一些,一般3~4m/s,这样可以避免低流速时原油附着于测量管壁及电极上,保证正常计量。.1.孔板流量计前后的直管段必须是直的,不得有肉眼可见的弯曲。2.安装节流件用得直管段应该是光滑的,如不光滑,流量系数应乘以粗糙度修正稀疏。3.为保证流体的流动在节流件前1D出形成充分发展的紊流速度分布,而且使这种分布成均匀的轴对称形,所以①直管段必须是圆的,而且对节流件前2D范围,其圆度要求其甚为严格,并且有一定的圆度指标。具体衡量方法:A.孔板流量计前OD,D/2,D,2D4 个垂直管截面上,以大至相等的角距离至少分别测量4个管道内径单测值,取平均值D.任意内径单测量值与平均值之差不得超过±0.3%B.在节流件后,在OD和2D位置用上述方法测得8个内径单测值,任意单测值与D比较,其最大偏差不得超过±2%②节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的局部阻力件形式有关和直径比β有关,见表1(β=d/D,d为孔板开孔直径,D 为管道内径)。4.孔板流量计上游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的形式和β=0.7(不论实际β值是多少)取表一所列数值的1/25.孔板流量计上游侧为敞开空间或直径≥2D大容器时,则敞开空间或大容器与节流件之间的直管长不得小于30D(15D).若节流件和敞开空间或大容器之间尚有其它局部阻力件时,则除在节流件与局部阻力件之间设有附合表1上规定的最小直管段长1外,从敞开空间到节流件之间的直管段总长也不得小于30D(15D)。

您如果需要德国VSEAHM01流量计样本的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网