德国VSEVHM02-2/流量计中国官网同时我们还经营:针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。 该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。 该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。容积式流量计主要用来测量不含固体杂质的高粘度液体,例如油类、冷凝液、树脂和液态食品等粘稠流体的流璧,而且测量准确,精度可达士0.2%,而其他流量计很难测量高粘度介质的流量。椭圆齿轮流量计是最常用的一种容积式流量计.如图3-13所示。1.工作原理 椭圆齿轮流量计的测量部分是由两个互相啮合的椭圆形齿轮A和B以及轴、壳体等组成。椭圆齿轮与壳体之间形成测量室。如图3-14所示。 当被测流体流经椭圆齿轮流量计时,由于要克服仪表阻力必然引起压力损失,从而在其人口和出口之间产生压力差 . 在此压力差的作用下,产生作用力矩使椭圆齿轮连续转动 . 由于 P1>P2,P1、P2共同作用产生的合力矩使A轮顺时针转动. 而B轮上的合力矩为零,此时A轮带动 B 轮顺时针转动.A为主动轮.B为从动轮. 在图3-14(b) 所示中间位置时,A轮和B轮都为主动轮.在图3-14(c)所示位置时,A轮上的合力矩为零,而B轮上的合力矩最大.B 轮逆时针转动,此时B为主动轮 .A 为从动轮。如此循环往复,将被测介质以椭圆齿轮与壳体之间的月牙形容积为单位,依次由进口排至出口。椭圆齿轮流量计旋转一周排出的被测介质体积量是月牙形容积的 4 倍。椭圆齿轮流量计的体积流量Q为:Q=4nv2(3-7)式中:n为椭圆齿轮的旋转速度;V2为椭圆齿轮与壳体间形成的月牙形测量室的容积。2.使用特点 椭圆齿轮流量计适用于洁净的高粘液体的流量测量,其测量精度高,压力损失小,安装使用方便,可以不需要直管段。但被测介质中不能含有固体颗粒,更不能夹杂机械物,否则会引起齿轮磨损甚至损坏。所以为了保护流量计,必须加装过滤器。 椭圆齿轮流盘计在启用或停运时,应缓慢开、关阀门,否则易损坏齿轮,另外,流量计的温度变化不能太剧烈,否则会使齿轮卡死。1.导电性和非导磁性 通过电磁流量计的工作原理可知电极上要产生感应电动势,首先电极必须是导体,因此电极必须具有非常好的导电性能。另外,电极处于工作磁场中,为防止磁力线在电极上集中,电极材料必须是非导磁的。2.耐腐蚀性 在电磁流量计工作的过程中,电磁传感器部分只有电极与被测介质相接触,因此电极材料的耐腐蚀性能是选择电极材料的重要因素。 电极的耐腐蚀性能对测试性能的影响主要分为两个方面。(1)电极受被测介质的腐蚀或磨损,会改变两电极间的距离L。对式的L求偏导,可以得到测量误差(2)电极在被腐蚀的过程中,电极上会出现相当大的直流漂移电压,使测量输出产生大幅度的波动,影响到测试的读数。3.电极的表面效应 电极的表面效应分为表面化学反应、电化学和极化现象,以及电极的触媒作用三个方面。(1)表面化学反应。电极表面与被测介质接触后,为了抗拒被测介质的腐蚀,往往会形成一层薄的钝化膜或氧化层。它们可能会提高电极表面的耐腐蚀性能,但也有可能增加表面接触电阻,导致仪器不能正常工作。(2)电化学和极化现象。由于目前普遍采用低频矩形波励磁,虽然能减弱极化电势的影响,但并不能完全消除极化电势干扰的影响。极化电势与液体介质性质以及电极材料性质有关。电化学现象容易在测量过程中产生浆液噪声和流动噪声,引起仪表输出出现波动现象。为了避免或减小这个现象,可选配与被测液体电化学和极化电势作用小的材料以及低噪声电极。(3)触媒作用。被测介质在电极的触媒作用下产生化学反应而影响测量。4.电极的表面光沽度 电磁流量计电极接触被测介质的表面对于粗糙度要求非常高,一般都应该抛光处理。主要原因有三个方面:表面光滑的金属在电解质中抗腐蚀性能较强;表面粗糙的金属,其产生的抗拒极化的氧化保护膜厚度不均匀,容易被颗粒状、纤维状等流体中的杂质划破,造成变动的直流电位,影响测量的稳定性;表面粗糙的电极容易在测试过程中被被测介质中的杂质污染,表面容易被杂质附着结垢,影响测试效果。德国VSEVHM02-2/流量计中国官网电磁流量计传感器的接地 为了使电磁流量计可靠的工作,提高测量精度,不受外界寄生电势的干扰,传感器应有良好的单独接地线,接地电阻<10Ω.在连接传感器的管道内若涂有绝缘层或是非金属管道时,传感器两侧还应加装接地环.a、在金属管道上的接地方式:金属管道内避没有绝缘层,按下图接地.b、 在塑料管道上或有绝缘层、油漆管道上的接地方式:电磁流量计传感器上的两端面应加装接地环,使管内流动的被测介质与大地短接,具有零电位.否则,电磁流量计无法正常工作.金属管浮子流量计常见故障及处理方法1.指针抖动 轻微抖动,-般都是由于流体流动自然引起的,不影响正常使用,可以在仪表的设置中适当的加大阻尼参数。剧烈抖动,一般是介质波动,脉动引起,还有一种原因是安装不正确,安装工况不符合流量计的要求,超过流量计的可测量量程。2.指针不动 一般是浮子卡死,不能随着流体流动而上下移动。我厂的多台金属管浮子流量计均出现过这种现象,通过拆检,发现是浮子卡死引起的。进一步分析原因为,浮子的导向轴由于长年磨碎形成凹槽,导向轴转动,与D形固定环卡住,导致浮子不能移动。我们的处理方法是将D形孔扩成圆形孔使得浮子能上下移动,使得仪表在不更换的情况下回复运行。还有-种原因是浮子.上的磁钢吸附介质中的铁磁性物质,8积月累,形成水垢状结合体,导致浮子移动不灵活甚至不能移动。这种情况是加装过滤装置,及时清理,定期维护方能正常使用。3.流量计没有显示 可能是电源接触不良或接线脱落,查看电源供应是否正常,接线是不是紧固,正负极是不是接反等。还有就是流量计内部电路损坏,显示组件损坏,处理方法是更换电路板显示部件等。4.实际流量与指示流量不一致 一般是浮子受介质腐蚀造成浮子的质量体积等发生变化,造成仪表系数与出厂标定的数值不一样,所以显示的流量与实际相测得的的流量存在误差。还有就是锥管内直径尺寸变化,与浮子变化一样,都是改变了仪表的系数,与出厂标定的数值不一样等。解决办法是更换成耐腐材料,或者重新标定,或者换新的浮子。如果还不能解决,那只能更换流量计了。浮子、椎管附着水垢污脏等异物层,那么就要对内部进行清洗蒸汽吹扫,还要防止损伤椎管内表面和浮子,保持浮子原有光洁度。还有就是流体本身发生变化,与原来的密度相比发生变化,不能准确测的流量。那么使用时只能修改内部参数使得适应新流体的密度等特性。气体、蒸汽、压缩性流体温度压力变化,那么温度压力等运行条件变化对流量测量值影响颇为灵敏,按新条件作换算修正。流体脉冲,气体压力急剧变化,指示值波动,那么虽然浮子偶发跳动影响不大,但周期性振荡,管道系统必须设置缓冲装置,或者改用有阻尼的仪表。液体中混入气泡,气体中混入液滴,那么混入物改变密度等影响,做必要改进排除之。用于液体时仪表内部死角存留气体,影响浮子部件浮力,那么对小流量仪表及运行在低流量时影响显著,排除气体。5.指针指示呆迟 浮子和导向轴间有微粒等异物或导向轴弯曲等原因卡住,解决方法是拆卸检查,清洗,铲除异物,校直导向轴等。导向轴弯曲的原因大多是阀门快速启闭,浮子急剧升降冲击所致。磁耦合浮子组件磁铁四周附着铁粉或颗粒,解决办法是拆卸清洗使之运行自如,不卡顿。运行初期利用旁路管,充分冲洗管道。为防止长期使用时管道可能产生铁锈,可在金属管浮子流量计前装设过滤器。指示部分连杆或者指针卡住,解决办法是手动试磁铁耦合连接的运动连杆,有卡顿阻尼部位调整之。检查旋转轴与轴承间是否有异物阻碍运动,解决办法是清除义务或更换零件。磁耦合的磁铁磁性下降,解决办法是拆卸下仪表,用手.上下移动浮子,确认指示部分指针等平稳地跟随移动;不跟随或者跟随不稳定则换新零件。智能电磁流量计的测量不受流体的密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。电磁流量计设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便。 智能电磁流量计在试运行过程中会产生的问题,一般是由于安装的问题或选型的问题引起的,而在正常运行期间发生的问题一般是由于工作条件变化或出现新干扰源等问题引起的。所以在正常运行期间的问题一般都可以归结为仪表抗干扰能力的问题。下面小编就简单分析一下智能电磁流量计输出晃动的原因及解决办法:一、智能电磁流量计输出晃动大体上可归纳为这几点:1、流动本身是波动或脉动的,实质上不是电磁流量计的故障,仅如实反映流动状况;2、管道末充满液体或液体中含有气泡;3、外界杂散电流等电、磁干扰;4、液体物性方面(如液体电导率不均匀或含有较多变颗粒/纤维的浆液等)的原因;5、电极材料与液体匹配不妥。二、电磁流量计检查程序: 智能电磁流量计输出晃动的流程:先按流程图考急作初步调查和判断,然后再逐项细致检查和试排除故障。流程所列检查顺序的先后原则是:1、可经观察或询问了解无须作较大操作的在前,即先易后难;2、按过去现场检修经验,出现频度较高而今后可以出现概率较高者在前;3、检查本身的先后要求。若经初步调查确认足后几项故障原因,亦可提前作细致检查。 检查智能电磁流量计管内液体是否冲满,如没有充满,那么传感器处于水平安装位置或垂直安装流动的位置应特别注意,改换到能完全冲满的位置,如垂直安装流动的位置。德国VSEVHM02-2/流量计中国官网电磁流量计是灌浆过程的主要工艺流程,为在施工中进行有效的控制,需对施工过程中的水和水泥浆液进行计量和控制。 钻孔、洗孔:灌浆施工首先要在岩层中自上而下分段进.行钻孔,待单孔终孔,用大量清水洗孔,至回水变清,无流量测量点,故不展开讨论。 简易压水试验:洗孔结束,下孔口管,密封孔口,以设计要求的压力向孔内送水,测定其相应的流量值,并据此计算岩体的透水率。计算结果关系到岩体渗透特性的评价以及灌浆成果资料整理。这一-测量点是十分重要和敏感的,准确是首要指标,水有一-定的电导率,满足电磁流量计的测量要求,需要重点考虑的是电磁流量计的口径,因为压水试验和灌浆用的是相同的电磁流量计. 灌浆:压水试验后,灌浆泵将一定水灰比(比如3:1,2:1,1:1,0.81,0.5:1)的水泥浆液压送到孔中,--部分进入裂隙而扩散,余下的浆液经回浆管返出孔外,流回到浆液搅拌机中,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min;或不大于1L/min,继续灌注60min,灌浆可以结束。每台钻孔设备都需要两台电磁流量计分别记录进、返浆流量,灌浆量就等于进浆量减去返浆量,现场管线与电磁流量计安装布置见图3。 由于现场灌浆泵泵量多为6m³/h(100L/min),故电磁流量计的量程选为100L/min,由电磁流量计的测量原理可知[4],其流速的下限由.同噪声或偏移的信噪比S/N(信号与噪声)来决定,上限则由测量管内衬里的磨损和配管的经济速度等来决定印。由于水泥浆液中带有水泥固体颗粒,考虑到对电磁流量计衬里和电极的磨损,选用流速≤5m/s,另一方面水泥浆液又具有易粘附、沉淀、结垢的特性,故电磁流量计测量管内的流速应不低于0.5m/s,以起到对电极和内衬的自清扫作用。一般当测量管内实际流速<0.1m/s时,感应电动势已变得十分微弱(零点几μV~几μV),此时噪声.的影响逐步变为主导,甚至淹没信号电动势4],由流速与相对误差的关系图(图4)可知,为了保证仪表的检测精度,流速应大于0.5m/s.故推荐使用流速范围为0.5~5m/s. 灌浆施工时吸浆量大小一般在0~100L/min,进、返浆,上电磁流量计相应的流量范围为30~100L/min,从流量、流速与口径三者关系表(表1)可知:电磁流量计口径选择DN25比较合适。DN25的测量范围是14.72~147.18L/min,同时DN25和现场灌浆管道口径一致,配套安装时,不需要变径。同时电磁流量计的时间常数也应该设置小一些,一般在1~3s,以提高测量的灵敏度。 封孔:待灌浆结束后,按照施工技术要求压浆封孔,无流量测量点,故不展开讨论。流量计准确度影响的实验分析 1实验要求 实验用钟罩式气体流量计标定装置标定DN50G65气体涡轮流量计,其准确度等级为1.5级;最小流量为Qmls:10m'/h,最大流量为Qmax:100m³/h;流量计量程比为1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2实验思路 实验以在流量计前端安装一对大小头作为扰流件,在扰流件和流量计之间安装不同长度的直管段。经过一定时间段的运行,确认标准裝置与流量计的流量偏差以及疣量计的重复性,以此分析扰流件对流量计准确度的影响。 3实脸分析 3.1在流量计.上游安装40cm直管段,下游安装19cm直管段实验 流量计上游直管段长度大于5D(25cm),下游直管段长度大于3D(15cm),实验安装图如图1所示,示意图如图2所示。 实验数据如表3所示。 从表3可以看出,扰流件安装在距流量计上游端较远时,其运行数据的流量偏差与重复性符合流量计的国家标准。 3.2在流量计上游安装29.1cm直管段,下游安装19cm直管段实验 流量计上游直管段长度较大于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图3所示. 实验数据如表4所示。从表4可以看出,扰流件安装在距流t计上游端接近5D处时,其运行数据的流量偏差(qmin≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。 3.3在流量计上游安装19cm直管段,下游安装40cm直管段实验 流量计上游直管段长度小于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图4所示 从表5可以看出,找流件安装在流量计上游端小于5D处时,其运行数据的流量偏差(qai≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。
您如果需要德国VSEVHM02-2/流量计中国官网的产品,请点击右侧的联系方式联系我们,期待您的来电