发布时间:
浏览: 次 作者:
德国VSEAHM02流量计中国同时我们还经营:1、开启时指针不动产生的原因:介质中含有杂质,使转子卡住;系统工作压力太小,致使金属管浮子流量计不正常工作,. 解决办法:清除异物;增加磁过滤器,增加系统工作压力.2、指针冲顶不回复产生的原因:介质中含有杂质,使转子卡住;仪表选型不合适,选用仪表太小. 解决办法:清除异物,增加磁过滤器;3、指针波动太大产生的原因:不能准确读数,产生原因:系统工作压力不稳定;介质存在脉动流或双相流的现象;仪表进出口处的管径变化大而导致压力变化或压力损失增加. 解决办法:检查自身系统;消除脉动流与双相流.减少压力损失.4、指针不回零产生的原因:由于仪表的波动而使指针位移;由于仪表的上下撞击,而使测量管内的零件弯曲变形. 解决办法:旋松指针处的小螺丝将指针复原至未工作状态;建议送回维修或更换.5、金属管浮子流量计远传不准确产生原因:环境温度超出工作要求;变送器漂移. 解决办法:按要求使用;适当调节变送器中的电位器或调节螺丝以恢复正常.6、流体正常流动时无显示,总量计数器字数不增加:检查电源线、保险丝、功能选择开关和信号线有无断路或接触不良; 检查显示仪内部印刷版,接触件等有无接触不良;检查检测线圈;检查传感器内部故障,上述1-3项检查均确认正常或已排除故障,但仍存在故障现象,说明故障在传感器流通通道内部,可检查叶轮是否碰传感器内壁,有无异物卡住,轴和轴承有无杂物卡住或断裂现象 . 解决办法:用欧姆表排查故障点;印刷板故障检查可采用替换“备用版”法,换下故障板再作细致检查;做好检测线圈在传感器表体上位置标记,旋下检测头,用铁片在检测头下快速移动,若计数器字数不增加,则应检查线圈有无断线和焊点脱焊;去除异物,并清洗或更换损坏零件,复原后气吹或手拨动叶轮,应无摩擦声,更换轴承等零件后应重新校验,求得新的仪表系数.7、 未作减小流量操作,但流量显示却逐渐下降:过滤器是否堵塞,若过滤器压差增大,说明杂物已堵塞;流量传感器管段上的阀门出现阀芯松动,阀门开度自动减少;传感器叶轮受杂物阻碍或轴承间隙进入异物,阻力增加而减速减慢. 解决办法:消除过滤器;从阀门手轮是否调节有效判断,确认后再修理或更换 ;卸下传感器清除,必要时重新校验.8、 流体不流动,流量显示不为零,或显示值不稳:传输线屏蔽接地不良,外界干扰信号混入显示仪输入端;管道振动,叶轮随之抖动,产生误信号; 截止阀关闭不严泄露所致,实际上仪表显示泄漏量;显示仪内部线路板之间或电子元件变质损坏,产生的干扰 . 解决办法:检查屏蔽层,显示仪端子是否良好接地;加固管线,或在传感器前后加装支架防止振动; 检修或更换阀;采取“短路法”或逐项逐个检查,判断干扰源,查出故障点.9、金属管浮子流量计示值与经验评估值差异显著:传感器流通通道内部故障如受流体腐蚀,磨损严重,杂物阻碍使叶轮旋转失常,仪表系数变化叶片受腐蚀或冲击,顶端变形,影响正常切割磁力线,检测线圈输出信号失常,仪表系数变化:流体温度过高或过低,轴与轴承膨胀或收缩,间隙变化过大导致叶轮旋转失常,仪表系数变化.传感器背压不足,出现气穴,影响叶轮旋转管道流动方面的原因,如未装止回阀出现逆向流动旁通阀未关严,有泄漏传感器上游出现较大流速分布畸变:(如因上游阀未全开引起的)或出现脉动液体受温度引起的粘度变化较大等;显示仪内部故障;检测器中永磁材料元件时效失磁,磁性减弱到一定程度也会影响测量值;传感器流过的实际流量已超出该传感器规定的流量范围. 解决办法:查出故障原因,针对具体原因寻找对策;更换失磁元件;更换合适的传感器.金属管浮子流量计安装要求:1、实际的系统工作压力不得超过金属管浮子流量计的工作压力.2、应保证测量部分的材料、内部材料和浮子材质与测量介质相容;3、环境温度和过程温度不得超过金属管转子流量计规定的最大使用温度;4、金属管转子流量计必须垂直地安装在管道上,并且介质流向必须由下向上;5、金属管浮子流量计法兰的额定尺寸必须与管道法兰相同.6、为避免管道引起的变形,配合的法兰必须在自由状态对中,以消除应力;7、为避免管道振动和最大限度减小金属管浮子流量计的轴向负载,管道应有牢固的支架支撑;8、截流阀和控制流量都必须在金属管浮子流量计的下游.9、支管段要求在上游侧5DN,下游侧3DN(DN是管道的通径); 玻璃转子流量计是通过量测设在直流管道内的转动部件的位置来推算流量的仪表甲,主要用于中、小管径的流量测量,使用范围广泛。相比其他类型的流量计,转子流量计可适用于高温高压场所,并且具有一定的耐腐蚀能力。 转子流量计按照用途可分为测量型及吹扫型。转子流量计具有结构简单、直观、压力损失小、维修方便等特点。转子流量计适用于测量通过管道公称通径D≤150mm的小流量,也可以测量腐蚀性介质的流量。 测量型转子流量计主要用于尿素装置中管道公称通径D≤150mm,介质为工艺冷凝液、蒸汽冷凝液、脱盐水、冲洗水等介质的小流量测量,大部分的测量型转子流量计主要用于尿液等易结晶腐蚀.管线冲洗时的测量。 测量型转子使用时流量计必须安装在垂直走向的管段.上,以使流体介质自下而上地通过转子流量计。 吹扫型转子流量计一方面应用于尿素装置中用于设备氮封,另一方面应用于仪表测量管线的吹扫。例如一段蒸发冷凝器、二段蒸发冷凝器的压力测量,如果采用插入式膜片的结构,尿素蒸汽很容易在膜片.上产生结晶,影响测量结果,这时就需要采用吹扫转子流量计进行压力的测量。 吹扫型玻璃转子流量计在安装时应选择合适的位置安装,以确保流量计吹扫装置的调整、清洗、拆卸方便,并确保介质的流体方向与流量吹扫装置要求的方向相同。安装时,针型阀应全部关闭,在实际测量时为防止浮子的突然加速,上冲撞击限位器,损坏测量部件,应缓慢地打开针型阀,将压力调整到工作压力。1.根据各检定点每次检定时标准器测得的实际体积,通过测量标准器和流量计的温度、压力、压缩因子等参数.计算出各检定点每次检定时标准器换算到流量计的累积流量和各检定点每次检定时流量计显示的累积流量,计算流量计各检定点单次检定的相对示值误差.2.对于某种型号的电磁流量计,需要计算被检流量计各流量点单次检定的引用误差.3.当标准器显示为累积流量时,可根据各检定点每次检定时间,计算流量计各流量点单次检定的瞬时流量相对示值误差.4.使用质量法装置检定时,需测出液体的密度,并考虑密度的空气浮力影响,把电子秤显示的质量换算到实际体积.5.计算流量计各检定点的相对示值误差,取流量计高区和低区各检定点相对示值误差中最大值作为流量计的相对示值误差.6.对于某种型号电磁流量计,需要计算被检流量计各流量点单次检定的引用误差。取流量计各流量点的最大值为引用误差的误差。7.带有脉冲输出的流量计(如涡街流量计或涡轮流量计)检定后需计算各检定流量点的系数和K系数的相对示值误差.电缆接头中的保护塞只能在准备安装电缆时拆除. DN3至DN8[1/10"至5/16"]的法兰型电磁流量计传感器,应采用DN10[3/8"]的配对法兰.这样DN3,4,6或者8[1/10",5/32",1/4"或者5/16"]的管道就会与仪表成为一体. 此外,DN3至DN8[1/10"至5/16"]法兰型传感器, 还可使用DN15[1/2"]的配对法兰. 石墨不可用于法兰或者工艺连接件垫圈,因为在一定条件下,仪表管道内部可能形成导电涂层.管路中应避免出现真空冲击,以防止可能对衬里(PTFE)以及仪表造成的损坏.配对法兰的垫圈表面 安装中,平行配对法兰的垫圈材料必须适于介质和操作条件.只有这样才可以避免泄漏.为了确保最佳的测量结果,须保证传感器垫圈应法兰同心.保护板 保护板用于防止衬里的损坏.只有在传感器将安装在管路中时才可以拆除保护板.必须谨慎小心,确保衬里未在安装过程中脱落或者损坏, 造成泄漏.法兰螺栓紧固扭矩 安装螺栓应按照通常的方式平均紧固,不可在电磁流量计某一侧过度紧固.我们建议螺栓在紧固之前添加润滑油,并交叉紧固,如上图一所示. 在第一轮紧固过程中,螺栓拧紧50%,在第二轮中提高至80%,最后使用最大扭矩紧固.不应超过最大扭矩见表一,表二1.测量液体 孔板流量计测量液体流量时工艺管道水平安装,差压变送器的位置处于节流装置下方时,取压口应在节流装置的水平中心轴线下偏 45°角引出,这可以消样除由流体传放出的气体进入导压管和差压变送器(如图8).若差压变送器处于节流装置的上方时,除取压口下偏≤45°角 然后向上引导压管外,应在导压管的最高点装置集器或排气阀.(如图9)2.测量水蒸汽 测量蒸汽流量时,安装方式一般为差压变送器低于,高于节流装置两种.(如图 12)取压口位置应附合上述安装要求,并在导压管制高点处装上放气阀和气体收集器。3.测量气体 测量介质为清洁的气体流量时,安装方式一般为差压变送器高于,低于节流装置两种c如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。4.测量腐蚀性液体和气体 测量腐蚀性的液体和气体流量时,取压口应附合上述安装要求,不论管道是水平安装或垂直安装,差压变送器高于或低节流装置③.测量气体测量介质为清洁的气体流量时,安装方式一般为差压变送器高于、低于节流装置两种(如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。为了提高孔板流量计的准确度,可采取以下措施。1.标准孔板节流装置的制造与安装 利用标准孔板流量计测量天然气流量必须严格按照SY/T6143-2004标准规定的各项技术指标,对标准孔板节流装置进行设计、加工制造、检验、安装和使用。特别是孔板直角入口边缘尖子度和测量管内壁粗糙度的加工和检验;孔板前后直管段长度的保证,直管段圆度、台阶以及孔板与测量管同轴度的保证。另外,开发统一的标准孔板流量计的设计软件,可提高节流装置设计和仪表选型的技术水平。2.采用可换孔板装置与定值节流装置 可换孔板节流装置是一种新型节流装置,节流元件精确地安装在固定的座体内(座体通过法兰与管道连接),在不拆动管道或不停止流体输送的情况下,可方便地提升孔板,进行检查、清洗或更换,从而保证了计量准确度。采用液压升降的装置,孔板提升轻便,特别适用于大口径孔板。这种节流装置还配有清洗室和清洗机构,为解决污垢介质,特别是单井天然气的准确计量提供了有效手段。 定值节流装置改变了现有节流装置根据计算结果加工其孔径的方法,对每种通径测量管道配以有限数量的节流件,孔径系列按优先数系选用,每种通径配35种不同孔径比β值的孔板。目前节流装置设计犹如量体裁衣,定值节流装置则变成成衣选用,采用定值节流装置有利于产品批量生产,降低生产成本,方便选用和使用,便于监督生产。可换孔板节流装置和定值孔板相配套,将改变传统的生产方式,实现了节流装置产品系列化、通用化和标准化,有利于提高标准孔板装置计量的准确度。 标准孔板存在的缺点是入口直角锐利度易在流体冲刷下发生钝化。据估计,钝化严重的可能使流出系数偏移1%~2%,钝化后其流出系数较为稳定,这在流量计算中给孔板入口直角锐利度的精确修正带来很大的困难。标准喷嘴的流出系数是稳定的,另外,在同样流量和相同β值时喷嘴的压力损失只有孔板的30%。影响标准喷嘴推广使用的主要原因是喷嘴制造成本高,在标准中喷嘴的流出系数不确定度较大(约2%)。采用定值节流件,专用加工设备实现批量生产,降低生产成本,而个别校准则可得到高精确度的流出系数,在天然气流量测量中用喷嘴代替孔板,其优点是明显的。3.应用合理的流量积算方案 根据天然气计量工况条件和用户对计量精度的要求,应采用对压力、温度和天然气组分变化对流量自动部分补偿或全补偿的积算方案,计量系统测量仪表配备和精度的选用应符合GB/T18603-2001妖然气计量系统技术要求》。用智能差压变送器,压力变送器、温度变送器和流量计算机组成在线检测系统,使温度和压力变化得到补偿,可以提高测量准确度,降低流态脉动(或波动)引起的流量测量附加误差。孔板流量计量程比一般为1~3,而实际测量天然气流量变化有时会超过这个范围。在这种情况下,其测量准确度显著下降,如果采用定值节流装置,宽量程智能差压变送器与流量计算机配套使用,可方便地扩展流量量程或迁移量程,进而实现传统孔板流量计的智能化。德国VSEAHM02流量计中国1)电磁流量计传感器内流体的流动方向必须与传感器上流动方向一致;2)必须保证电磁流量计传感器测量管内在所有时间始终充满被测流体,电磁流量计传感器不能在不满管和有可能出现空管情况下工作;3)电磁流量计传感器应选取管内流体脉动较小的位置作为测量点。一般情况下,离泵、阀门等较远的地方,仪表指示比较平稳,波动较少;4)测量双相流体时,应选择不易引起相分离的地方;5)对于聚四氟乙烯衬里的传感器,应避免安装在负压管道和有可能产生瞬间负压的地方;6)要避免容易产生液体电导率不均匀的场所,如添加液的电导率与基液不同,加液点最好设在传感器下游。 根据经典理论,电磁流量计传感器测量管内流速分布为轴对称时,电磁流量计的测量准确度不受流速分布的影响。 气体涡轮流量计是速度式流量计量仪表的一种,其传统结构(图1)主要由壳体、叶轮支架、轴承支架、叶轮轴、轴承叶轮、导流整流器、计数装置组成。当被检测气体经过气体涡轮流量计时,气体在导流整流器中被整流和加速,然后推动叶轮进行旋转,叶轮转动的速度和进过流量计的流体流速成正比,通过一系列的减速,最后由计数装置对叶轮转动的圈数进行累加,达到流量计计量的目的。 但是通过多年的实践发现,仪表的精度除了受零部件加工精度的影响以外,和轴承选用也有很大的关系,仪表要想保持长时间的稳定运行,轴承必须有足够的使用寿命,但是,对于进行维修和维护的仪表进行故障统计分析,大多是由于轴承的失效造成了仪表的损坏,对其进行受力分析(图2)表明,传统型的流量计结构在轴承的设计方面是一个薄弱环节。 叶轮受到气流的冲击,气流对叶轮除了产生驱动叶轮旋转的推力外,还会产生一个垂直于叶轮的推力F推力,为了维持平衡,固定轴承会受到一个由轴承支架提供的反作用力F反推力。固定轴承为了支撑叶轮及轴系本身的重力会受到-个压力N反推力,浮动轴承由于阻止叶轮以固定轴承为支点进行旋转会得到一个压力T",因此,固定轴承处在一个最恶劣的工作环境之下,经过长时间的运转,在缺少润滑的情况下,固定轴承的使用寿命大打折扣。特别是在高速运转情况下,垂直于叶轮的推力F推力也会随着转速的提高而提高,固定轴承的使用状况随之更加恶化。事实也正是如此,在维修的气体涡轮流量计中,离叶轮较近的固定轴承损坏几乎占到了100%,轴承最后只剩下了内圈外圈,叶轮也因此波及,仪表不得不进行关键部件的更换,及时发现故障并进行排除还好,如果没有及时发现,造成经济上的损失我们将无法弥补。为了改善固定轴承的使用环境,轴承所承受的支撑力我们无法改变,但是,我们可以想办法改善固定轴承所受到的反作用力F反推力,因此,引入了气体推力轴承的设计。1、根据工艺设计资料和实际情况确认使用流量范围,在计算基础上确定流量计的口径。若涡街流量计选型过大,管道内介质的流速低于流量计工作的下限值,就会产生小流量时输出信号不稳定,大流量时输出信号稳定。2、流量计附近有大功率的电机或强电场时,容易引起干扰信号,有可能管道内无介质流通,但仅表有流量显示。动力线同流量计信号输出线并排走向靠近时,有可能使流量计输出信号偏小。管道内有正常流量,但传感器输出频率偏小很多。33流量计应单独接地,若接地不良,或管道振动.大,而引入干扰信号就会产生管道内无流量,但传感器有输出信号。3、流量计应单独接地,若接地不良,或管道振动.大,而引入干扰信号就会产生管道内无流量,但传感器有输出信号。4、流量计调节阀门应装在流量计下游,若阀门装在流量计上游,在小流量时产生射流,会引起流量值的偏差和稳定性。5、介质温度小于150℃时选一体型,高于150℃时或环境温度、温度都比较高时,应选用分体型。6、涡街流量计投用前,对管道应进行清洗,以冲掉管道内的铁锈、焊渣等杂物,防止击坏仪表。针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。 该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。 该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。作为一种用于测量流量的仪表,涡街流量计与流量积算仪表放在一起用就能对液体流量和总量进行测量,并且还能用于很多其他的行业,给其他领域也带来了一定的好处。 现如今,涡街流量计已被广泛应用到工业生产中,作用也越来越重要,如果在涡街流量计使用过程中反映出测量数据不准确,首先要做的就是判断是那个方面的不正确导致了流量的误差,下面,苏川仪表和大家一起探讨关于涡街流量计测量误差的原因分析:1、温度对测量的影响:温度对一般的流量计测量介质都会有影响,温度高低影响了介质的密度,粘度等等,这些都会让测量结果不准确,出现误差。 消除此影响一般是对K系数进行修正,目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。2、选型方面的问题:实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小。 涡街流量计实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大,工艺条件的变动只是临时的,可结合参数的重新整定以提高指示准确度。3、参数整定方向的原因:产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数。而资料上参数的不一致性又影响了参数的确定,通过重新标定结合相互比较确定了参数,解决了此类问题。 涡街流量计作为一种高精度的仪器,不仅仅是在制造和使用的过程中需要严格遵守其要求,在后期的保养中也必须特别注意才能不使流量计提前退休。1.电磁流量计在浆液中的特别安装要求 首先,要对电磁流量计的特别安装要求进行分析,首先要了解此电磁流量计相对于其它一些流量计在特征方面有什么不同之处,电磁流量计的特点在于采用了法拉第的电磁感应定律,测量方法主要以直接测量的方式进行。并且,在测量结果上不受到流体密度、粘度、温度以及压力的影响,没有阻流件与相应的压力损失,同样也不会在高流速的情况下发生一些气体腐蚀的现象。不过,由于在实际的安裴过程中没有采用科学的安装方法以及严格安装电磁流量计的特别安装要求,部分电磁流量计极易在实际的运作中造成仪表测量误差的出现,严重的还会造成仪表的损坏。在进行电磁流量计的安装过程中,需要严格按照安装流程进行操作,由于现场操作的复杂性,为了确保电磁流量计可以在运行效果上达到一个较好的操作水平,可以进行三台以及电磁流量计的统一安装操作,在气化炉的顶部进行安装,从而进一步增强测量效果,同时延长流量计的前直管段的使用方式,以便解决加压泵在工作过程中造成的脉动影响。2.电磁流量计使用方法建议 在单机进行试车阶段,需要严格安装使用方式提示,禁止对电磁流量计进行送电。气化炉在停车后,需要对电磁流量计先进行停电操作,然后再对其进行清洗,主要足清洗其中的管线,避免因电磁流量计内部的传感器励磁形成的磁场吸附了电极周围的铁锈而造成最终清洗效果的降弱。在正常的运行阶段,如果发现电磁流量计发生-些波动或干扰现象的出现,需要对其原因进行分析,主要的原因可以概括为如下几个方面:第一为泵引发的波动因素,主要因为煤浆泵在某个工作时间内出现了异常工作效果,整体的流量值发生变化的可能性不大,但由于流量脉动的变化波动量也随之发生了较大的变化。第二为煤浆引起的波动,前文提到,煤浆属于混合物,其中不仅含有煤水化合物,还包括一些金属颗粒,随着这些金属颗粒含量的增多,尤其是电极周围堆积的金属颗粒随着电极压力的形成逐步增加,从而造成停车现象的出现。第三为电磁流量计输出信号的尖脉冲千扰,因为煤浆含有的大颗粒金属摩擦导致电极之间瞬间产生尖脉冲信号干扰,井且电磁流量计内部的传感器受到温度的影响,使得煤浆管线的冲洗难度不断增加。3.电磁流量计的特殊加工 在进行电磁流量计的特殊加工过程中,要使用锰合金等特殊材质的加工方法进行防护冲刷磨损套的制作。对一些电磁流量计的碳化效果,电磁干扰效果的主要作用是指在防护冲刷效果的基础.上,以电磁流量感应为防护基础,以电极防护标准作为碳化防护效果的主要依据,根据电磁流量计加工的特性,在实际的应用效果上进行特殊加工。针对铁磁性质的干扰,需要进行水煤浆磁过滤操作,在经济条件允许的情况下可以采用不锈钢的输送管道,并定期对电磁流量计内部进行检查与清理。针对电磁流量计的参数设定问题,不能按照最佳的安装条件时测定的参数进行,也不能牺牲灵敏度弥补脉动流造成的波动,建议整体的阻止时间不应操作三十秒这一区间范围。值得一"提的是,只有在进行防护检修的过程中,才能最终确定相应的电磁流量参数,应当建c起统一的标准积极发挥其计量参数的特长与优势。德国VSEAHM02流量计中国涡街流量计由壳体、漩涡发生体和放大器组成.一种典型的结构如图4所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号. 涡街流量计是一种无运动部件的流量计,按其原理分类属于振荡型流量计.同属于这类流量计还有漩涡进动型流量计;振荡射流型流量计.由于涡街流量计不含有运动部件及对流体冲刷敏感的部件,因而在使用过程中,可靠性高,使用寿命长,并具有一般节流式流量计的优点,精确度稳定,再现性好.在大批量生产和工艺稳定的条件下,可以采用“干校验法”,即不必逐台仪表进行实液标定,可根据结构尺寸直接确定仪表常数及仪表精度.涡街流量计是‘种数字式流量计,它输出的脉冲信号的频率与流量成线性关系,同时具有量程宽、重复性好.便于远距离无精度损失的传输.此外仪表常数及精度不受介质的压力、温度、密度等变量的影响.一旦涡街流量计的结构确定.流体振荡就服从的客观规律,其振荡频率不能人为地改变,因而仪表常数及其变化规律是客观的.作为流量计,首先需要确定它的通径和流量测量范围即确定传感器测量管内流体的流速范围。 流量计量程范围的选择对提高流量计工作的可靠性及测量精度有很大的关系根据不低于预计的最大流量值的原则选择满量程.正常常用流量最好超过满量程的50%这样就可以获得较高的测量精度。 传感器通常选用与工艺管道相同的通径或者略小些.在量程选定的情况下通径的选择是根据不同的测量对象以及传感器测量管内流体流速的大小来决定的.电磁流量计所测流体的流速从其测量原理本身考虑可以选得很高有些场所曾选到10m/s但在一般使用条件下,考虑到管道中流体的流速与压力损失的关系流速选择在2~4m/s为最适宜.在特殊情况下要按照不同的使用条件来确定。例如对于带有有颗粒造成管壁磨损的流体常用流速选为≤3m/s对于易粘附管壁的流体常用流速则选为≥2m/s.在测量纸浆时流体的流速提高到4m/ s 以上,可以达到自动清除电极上附着纤维的目的。 确定了流速以后流量计传感器的通径可以根据下述关系式确定。电磁流量最大流量选择参考图流量积算仪主要用于各种液体、蒸汽、天然气及其他气体的流量测量。由于流量积算仪功能多,使用非常复杂,使用时容易出现问题。一、设置中易出现的问题1.介质及介质状态的设置(1)错误地设置介质,例如,当介质为蒸汽时,设置为空气。(2)错误地设置介质状态,例如,当蒸汽状态为过热蒸汽时,设置为饱和蒸汽。2.流量信号输入的设置 一般为频率信号输入,也有模拟信号输入。容易出现的问题是输入错误的信号,如本应输入频率信号却输入了模拟信号,或本应输入模拟信号却输入了频率信号。3.温度、压力信号输入的设置 温度信号输入一般是模拟信号,可以设置为(4~20)mA电流信号、(0~l0)mA电流信号、(1~5)V电压信号、Pt100铂电阻信号。容易出现的问题是设置了错误的信号,如本应设置模拟信号却设置了频率信号,或本应设置铂电阻信号却设置了(4--20)mA电流信号。 压力信号输入一般是模拟信号,可以设置为(4--20)mA电流信号、(0~10)mA电流信号、(1~5)V电压信号。容易出现的问题是设置了错误的信号,如本应设置(1~5)V信号却设置了(4~20)mA电流信号。4.配套流量计的设置 通常可以设置为孔板流量计、涡街流量计、涡轮流量计。由于流量计原理不同,因此,在流量积算仪的流量计算中.不同类型的流量计有不同的算法,如果流量计选型错误,则流量计算必然出错。5.温压补偿的设置 应用在蒸汽介质流量计量时,需进行温压补偿。例如一台流量积算仪,当用于过热蒸汽时.需要同时进行温度补偿和压力补偿;当用于饱和蒸汽时,由于一一对应关系,只能对其中一个输入信号进行补偿,根据现场情况,只选择温度补偿或只选择压力补偿。如果应用在天然气介质流量计量中.需同时进行温度补偿和压力补偿。6.输入信号范围的设置 温度输入信号、压力输入信号、流量输入信号分别设置自己的测量范围,流量积算仪设置的流量测量范围、温度测量范围、压力测量范围应分别大于现场的流量范围、温度范围、压力范围。例如,设置最大流量1O00m3/h,但实际测量流量为2000m3/h,超过了积算仪中设置的流量测量范围,则流量计算出错。二、接线时易出现的问题 对于不同的输入信号.需要选择不同的接线端子。但在实际应用中,由于操作比较复杂,接线时容易出现错误。例如流量积算仪使用在饱和蒸汽下,流量积算仪内部设置为温度补偿,而在实际接线时将压力输入信号作为补偿信号接到流量积算仪,造成接线错误,从而造成流量计算错误。 综上所述.要正确使用流量积算仪,需要专业人员严格按照现场操作条件进行设置和接线,以保证流量积算仪的正确使用;同时,流量计量人员应按照用户要求.模拟流量积算仪现场使用条件进行流量积算仪的检测。作为一种用于测量流量的仪表,涡街流量计与流量积算仪表放在一起用就能对液体流量和总量进行测量,并且还能用于很多其他的行业,给其他领域也带来了一定的好处。 现如今,涡街流量计已被广泛应用到工业生产中,作用也越来越重要,如果在涡街流量计使用过程中反映出测量数据不准确,首先要做的就是判断是那个方面的不正确导致了流量的误差,下面,苏川仪表和大家一起探讨关于涡街流量计测量误差的原因分析:1、温度对测量的影响:温度对一般的流量计测量介质都会有影响,温度高低影响了介质的密度,粘度等等,这些都会让测量结果不准确,出现误差。 消除此影响一般是对K系数进行修正,目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。2、选型方面的问题:实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小。 涡街流量计实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大,工艺条件的变动只是临时的,可结合参数的重新整定以提高指示准确度。3、参数整定方向的原因:产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数。而资料上参数的不一致性又影响了参数的确定,通过重新标定结合相互比较确定了参数,解决了此类问题。 涡街流量计作为一种高精度的仪器,不仅仅是在制造和使用的过程中需要严格遵守其要求,在后期的保养中也必须特别注意才能不使流量计提前退休。