发布时间:
浏览: 次 作者:
德国VSEVHM02-1流量计定制同时我们还经营:1、精确度 一般说来,选用涡轮流量计主要是看中其高精确度。目前涡轮流量计的精确度大致为液体:国际市场为±0.15%R,±0.2%R,±0.5%R和±1%R,国内定型产品为±0.5%R和±1%R;气体:国际市场为±0.5%R和±1%R,国内为±1%R和±1.5%R,以上精确度指范围度为6:1或10:1。精确度除与本身产品质量有关外,还与使用条件密切相关。 若缩小范围度可提高精确度;特别是作为标准表法流量标准装置的标准流量计,若定点使用,精确度可大为提高。 流量计精确度愈高,对现场使用条件的变化就越敏感,要想保持其高精度,需要对仪表系数特别的处理。一种处理方法就是所谓仪表系数浮动处理法。即由现场以下条件实时进行处理:a)粘度受温度的影响;b)密度受压力、温度的影响;c)传感器信号冗余(一台传感器输出二个信号,监视其比值;d)系数的长期稳定性(采取控制图确定)等。 对于贸易储运交接计量,常配备在线校验装置,以便定期进行校验。 生产厂使用说明书列举的仪表精确度为基本误差,现场应估算附加误差,现场误差应为两者的合成。2、流量范围的选择 涡轮流量计的流量范围的选择对其精确度及使用期限有较大的影响。一般在工作时最大流量相应的转速不宜过高。使用状况分连续工作和间歇工作两种,连续工作是指每天工作时间超过8小时,间歇工作是每天工作时间少于8小时。对于连续工作最大流量应选在仪表上限流量的较低处,而间歇工作可选在较高处。一般连续工作是将实际最大流量乘以1.4作为流量范围的上限流量,而间歇工作则乘以1.3。 如果仪表口径与工艺管道通径不一致时,则应以异径管和等径直管改装管道。 对于流速偏低的工艺管道,最小流量成为选择仪表口径首先要考虑的问题,通常以实际最小流量乘以0.8作为流量范围的下限流量,使其留有一定的裕量。若配有分段线性化功能的显示仪,在传感器流量下限值不能满足实际最小流量时,应要求生产厂在实际最小流量及其附近进行流量校验,将测得的仪表系数输入显示仪,这样就能既降低仪表的流量下限值,还能保持测量的精确度。3、精确度等级 对于仪表精确度等级的要求要慎重,应该从经济角度来考虑,例如大口径输油(输气)管线的贸易结算仪表,经济上关系重大,在仪表上多投入是合算的。至于输送量不大或作为过程控制用只需中等精度水平即可,切忌盲目追求高精度。本安型防爆传感器适配安全栅型号及制造厂,核查防爆等级及批准文号等。若要显示质量流量(或标准状态下体积流量)要选配压力、温度传感器或密度仪表。涡轮流量计显示仪现已由以微处理器为基础可与上位计算机进行通信的流量计计算机所包括,该仪表在仪表功能及使用范围等都远超过老式涡轮流量显示仪。目前作为贸易计量的各类型流量计都趋向于配有直读式显示装置。不但有总量计量的显示,还可附加补偿器(一台功能齐全的流量计算机)输出远传信号。4、对流体的要求 对流体的要求为洁净(或基本洁净)、单相或低粘度的,常用流体举例如下:一般流体,包括水、空气、氧气、高压氢气、牛奶、咖啡等;石油化工类:汽油、轻油、喷气燃料、轻柴油、石脑油、乙烯、聚乙烯、苯乙烯、液化气、二氧化碳及天然气;化学溶液类:氨水、甲醇、盐水等;有机液体:酒精、苯、甲苯、二甲苯、丁二烯、四氯化碳、甲基胺、丙烯腈等;无机液:甲醛、酢酸、苛性钠、二硫化碳等。对于腐蚀性介质,使用材质选择要注意,含杂质多及磨蚀性介质不推荐使用。5、对液体粘度的要求 液体涡轮流量计为粘度敏感的流量计,当液体粘度增大时,仪表系数的线性区变窄,下限流量增大,当粘度增加到一定数值时,甚至无线性区域。螺旋叶片的情况比直叶片要好的多。 对于液体,通常用水校验传感器,当精度为0.5级时,可在5×10-6mm2/s以下的液体而不必考虑粘度的影响。当流体粘度高于5×10-6mm2/s时,可用相当粘度的液体校验而不必作粘度修正。此外也可采取一些措施来补偿粘度的影响。如缩小使用范围度,提高流量下线值或仪表系数乘以雷诺数修正系数等。 粘度对仪表系数的影响与传感器结构类型及参数口径大小等有关。有几种粘度对仪表系数影响的表示方法:仪表系数与雷诺数的关系,在几种粘度下,仪表系数与输出频率的关系和仪表系数与输出频率除以运动年度的比值的关系等等。这些资料有的生产厂准备有,但并非所有的生产厂都有这些资料。6、对气体密度的要求 气体涡轮流量计主要考虑流体密度对仪表系数的影响,密度的影响主要在低流量区域,如图14所示。密度的增大(即压力增大)使特性曲线直线部分向下限流量区域拓展,传感器的范围度扩大,线性度改善。若气体涡轮流量计在常压的空气中校验使用时被测介质工作压力不一样,其下限流量由下式计算qvmin,qvamin-分别为压力p和压力pa(101.325kPa)下被测介质和空气的体积流量下限值,m3/h;p,pa-分别为工作压力(绝压)和大气压(101.325kPa),kPa;d-被测介质的相对密度,无量纲。7、体积流量换算到质量流量 涡轮流量计测量的是实际体积流量,无论物料平衡或能源计量,介须测量介质流量(即标准状态下的体积流量),这是应由下式进行换算 式中 qv,qvn-分别为工作状态和标准状态下的体积流量,m3/h;p,T,Z-分别为工作状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;pn,Tn,Zn-分别为标准状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;8、不宜选用涡轮流量计的场所含杂质多的流体,如循环冷却水、河水、排污水、燃油等;流量急剧变化的场所,如锅炉供水系统、有空气锤的供气系统等;测量液体时,管道压力不高而流量又较大,仪表下游侧压力可能接近饱和蒸汽压,有产生气穴的危险,如液氨从高位槽靠位能自由流出,在排放口处就不宜安装;电焊机、电动机、有触点的继电器等的附近,存在严重电磁干扰的场所;上下游直管段长度严重不足,如轮船的机舱内;锅炉自动供水系统如频繁地起泵和停泵,对叶轮造成冲击,使传感器很快损坏;有腐蚀性或磨蚀性介质选型时应慎重,宜与制造厂联系咨询。9、经济性 选用涡轮流量计用于高精确度场合,其经济因素应多方面考虑。仪表的购置费只是费用的一部分,还应考虑以下几方面的开支:安装用辅助设备费(如消气器、过滤器等)或旁路支管包括阀门等;校验费,为了保持高精度必须经常校验,甚至在现场安装一套在线校验装置,其费用相当可观;维护费,涡轮流量计的易损件更换用,他是保持高性能必需的。1.煤浆的磨损大,所以电磁流量计采用耐磨的ETFE衬里”的观点不准确,ETFE主要解决了与金属的附着问题。虽然ETFE的原料便宜,但其目前的处理工艺复杂,用它来制作衬里,成本比PFA还高,且没有表征ETFE的.耐磨性优于PTFE的佐证。2.采用低噪声电极,所以波动小”的观点不准确。电极的形状的确与噪声大小相关。由于原进口流量计的电极在某煤化I企业有结垢现象,经常需要把流量计拆下来用晶相砂纸打磨电极,而上海威尔泰采用自清洁电极(即尖状电极),有效地解决了结垢问题。实际应用表明,虽然采用自清洁电极流量计的平稳性比采用球面电极的平稳性稍差,但也没有出现过异常波动。所以,我们认为,在解决煤桨流量输出异常波动方面,低噪声电极并非关键技术。3.原进口流量计安装要求低,‘前5D后2D'就行”的观点不准确。在实验室标定时,要求直管段比较长(达到10D);在应用中,-般“前5D后3D”就足够了,这并非仅仅适用于进口流量计。如果缩径,直管段要求还可以进一步减小。另外,现阶段的煤浆流量计,基本没有投闭环控制的,对于精度的要求不是很高,关键是保证安全连锁处于有效状态,以避免异常波动引起误跳车。4.原进口流量计流速大小对流量的影响很小,适用0.3m/s的流速"的观点不准确。这种说法有很大的误导作用。实际应用经验表明,当流速较低时,尤其是当流速低于0.5m/s时,煤浆流量计容易波动。因此,这种观点不准确。5.单纯缩径"的观点不准确。我们曾经把管道缩径,安装较小口径的流量计,实际使用效果却不如采用本文所提的方案。一方面,由于涉及管道改造、高压法兰以及压力容器级别的焊接,综合成本也不低;另一方面在管道上缩径,小口径长度会远大于在电磁流量计上缩径,导致压损增大,再加.上转换器未替换,很多结果不可预知。6.原进口流量计因为业绩多,所以风险小”的观点不准确。业绩多和业绩好是两个概念,二者没有因果联系。由于历史的原因,原进口流量计市场占有率比较高,好的业绩虽然多,但差的业绩也有。一旦波动引起误跳车,损失是很大的。据不完全统计,因为煤浆流量计波动引起误跳车,200000t甲醇生产线一次损失约为300000元;600000t甲醇生产线,误跳车一次的损失约为800000元。这也是质量好的煤浆流量计价格居高不下的原因之一。我们曾经使用两种品牌的进口流量计,八个月就坏的情况也出现过,-年坏三套的情况也发生过。由于超声波流量计传感器的安装位置,被测管路的状态对测量精度有很大影响,因此请选择满足下列条件的场所。1.管道圆度好,内表面光滑,管壁均匀。2.上游侧5D,下游侧3D以上的直管段,注“D为管道内径”。3.被测管路必须充满液体。4.必须有足够的空间易于传感器的安装与操作。5.在水平的被测管路,传感器不应装在管道的顶部和底部,并避开管道凹凸不平及有焊缝处。超声波流量计传感器的安装1.在已定的安装位置周围比传感器约大一倍的面积上,将管壁上的油漆、铁锈、污垢等清除干净,擦净露出金属应无凹凸不平。2.将紧固件安装在管道上,用不锈钢带将其固定在管道上,不应松动。3.铺设好电缆由电缆接入孔接到接线盒中的接线端子上。4.每个传感器换能器正面,涂上一厚层耦合剂(黄油)后,将传感器换能器面与管壁接触,放置在紧固组件中,并用压紧盖板将传感器压紧,耦合剂应从传感器四周的缝隙中挤出,形成一道密封条。紧固螺铨钮紧,注意四个螺铨用力要均匀,不要使传感器偏移。1.制定气体流量计定期清理表内液体的制度 为保障旋进旋涡流量计计量的准确性,降低故障概率,在实际的运行与使用过程中,要进行计定期进行流量计各个部件的清理,尤其是要清理气体流量计内的无关液体,相关部门需结合其具体的使用情况,确定最佳的清理周期,应用恰当的清理方法,保障清理的效果.2.及时更换气体流量计漩涡发生体 漩涡发生体如果在使用的过程中出现了损坏现象,同样会影响计量精度.因此,这就要求在日常的维护过程中,需要定期进行气体流量计漩涡发生体的定期更换.通常情况下,漩涡发生体的损坏主要是由于气中含有细小泥沙等杂物,这些杂物会在流量计的运行过程中对螺旋体产生一定的冲击,进而导致传感器出现故障,这种情况下,就需要保障气中不存在任何无关的杂物,及时清理流量计螺旋体,避免其他杂质、硬物造成的冲击与损坏.3.现场进行压力系数调节 对每台旋进旋涡流量计而言,在出厂的过程中,都存在固定压力与温度系数,如果在实际的计量过程中,额定压力高于介质压力时,流量计的计量结果会与实际存在较大的偏差,甚至无法正常显示.因此,在实际的计量工作中,需结合介质压力等参数,可以进行压力系数的调节与控制.4.加强计量器的管理 机械干扰是旋进旋涡流量计最常见的故障,在实际的使用过程中,为了避免这些故障的出现,相关人员需要加强对流量计的管理,在安装的过程中,要严格遵守相应的安装规范,保障流量计前后良好的固定性,在操作的过程中,避免出现各种不当的操作行为.一.和其它流量计一样, 虽然电磁流量计它的测量范围比是30:1, 比涡街流量计和差压式流量计都要高, 但也是有限制的,许多客户定表时,常常把它和水表相比较,以为可以测量很低的流速,一般情况下,它只能测0.1m/s.低于此流速电磁流量计就很难正确测量.所以定货初期对流量范围比要搞清楚.定货时不能按原先管道口径来定货,最好按你实际流量来定仪表口径。二.和其它流量计一样,电磁流量计对安装前后直管道也有要求,只不过比其它类流量计要求更低,但最关健一点要满足:就是满管, 再满管.不满管的情况下容易引起流量计乱跳:三.和其它流量计一样,电磁流量计也有防护等级,一般一体式的防护等级为IP65,分体式的为IP68(针对传感器而言), 如果客户对仪表安装环境有要求,安装地点在地下阴井或其它一些潮湿的地方,建议客户选用分体式的.以免选错对仪表造成损害。四.电磁流量计可以测腐蚀性液体,但定货初期客户要正确提供其它测量介质属性,以免选型时对电极选型上的错误,导致传感器在后期使用过程中报废,给客户带来不便和经济上的损失。五.电磁流量计虽说可靠性比较好,一般情况下不会损坏,但由于其原理决定,传感器电极表面一直和液体接触,时间久了,电极表面比较容易受污染。所以电磁流量计一般情况下,客户有条件拆的情况下,建议一年到一年半之间拆出来清洗一次电极以保证流量计整机的测量精度。任何仪器仪表都是需要“保养”的,电磁流量计也不例外。六.在主管线是垂直管线时,一般情况下,要求水流是自下而上,尽量不要自上而下。后者容易引起流量波动比较大。安装除了满管以外,这点也是很重要的,其次就是前后直管道的距离了。1.涡轮流量计的始动流量值qvmin很大程度上取决于轴和叶轮前后轴承间的机械摩擦阻力矩7b,而它是由轴承与轴的微小间隙内流体与固体壁面的粘性摩擦引起的,且内部流体可认为始终处于层流状态。Tb越小,qvmin也越小,因此为了使涡轮流量传感器在小流量测量范围内能够体现良好测量性能,最重要的是要减少轴和轴承之间的机械摩擦。2.流体介质密度ρ与qvmin值成反比,ρ越大,则qvmin越小。液体密度受温度影响不大,相比之下温度的变化会较大程度改变气体密度,所以测量气体时要留意温度因素,以防引起传感器特性曲线的变化。3.同样条件下,叶片安装角β越大,则qvmin越小。 当被测流体流量大于qvmin后,流量继续增加会使叶轮旋转角速度加快,此时流体因素阻力矩与机械摩擦阻力矩相比占据主要地位,故可认为Tb=0。由于流体流动状态不尽相同,而涡轮流量计传感器实际的特性曲线受流体流动状态影响.德国VSEVHM02-1流量计定制金属管浮子流量计是由浮子、锥管、检测器等部件组成。浮子组件装有磁钢,其作用把是浮子的位移信号以磁信号的形式传输给检测器。检测器把这一检测到的信号再以电信号的形式远距离传输,并现场指示瞬时流量值。浮子流量计具有小流量值、范围度大、不用现场调试的特点。其结构简单、运动部件磨损小、使用寿命长、压力损失小、安装方便、维修量小、使用周期长、可远距离传输流量信号,与计算机连用可实现集中管理。 但也存在不足,如对于高黏度、大流量、以及两相以上流体不能测量。 金属管浮子流量计实现流量测量的理论基础是“定压将,变面积“原理。在流动的流体中放置一个轴线与流向平行的浮子,见图1. 金属管浮子流量计本体可以用两端法兰、螺纹或软管与测量管道连接。当流体自下而上流入锥管时,被浮子截流,这样在浮子上、下游之间产生压力差,浮子在压力差的作用下.上升,这时作用在浮子上的力有三个:流体对浮子的动压力、浮子在流体中的浮力和浮子自身的重力。只有当流体对浮子的动压力与浮子在流体中所受的浮力之和等于浮子的重力时,浮子就平稳地浮在某一位置上。 大量实验证明,在一定雷诺数的范围内,对于同一口径金属管浮子流量计,流体流速的大小与浮子的形状有关。对于给定的浮子流量计,浮子大小和形状已经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,浮子将作向上或向下的移动,相应位置的流动截面积也发生变化,流动截面积与浮子的.上升高度成比例,即浮子的某一高度代表流量的大小。浮子上下移动时,以磁耦合的形式将位置传递到外部指示器,直到流速变成平衡时对应的速度,浮子就在新的位置上稳定。对于-台给定的浮子流量计,浮子在测量管中的位置与流体流经测量管的流量的大小成一--对应关系。超声波流量计目前通常采用三种安装方式:W型,V型,Z型。根据不同的管径和流体特性来选择安装方式,通常W型适用于小管径(25~75mm),V型适用于中管径(25~250mm),Z型适用于大管径(250mm以上),总之,为了提高测量的准确性和灵敏度,选择合适的安装方式,使得测量信号(即差值)与二次仪表相匹配。 为了保证仪表的测量准确度,应选择满足一定条件的场所定位:通常选择上游10D、下游5D以上直管段;上游30D内不能装泵、阀等扰动设备。1、零流量的检查 当管道液体静止,而且周围无强磁场干扰、无强烈震动的情况下,表头显示为零,此时自动设置零点,消除零点飘移,运行时须做小信号切除,通常可流量小于满程流量的5%,自动切除。同时零点也可通过菜单进行调整。2、仪表面板键盘操作 启动仪表运行前,首先要对参数进行有效设置,例如,使用单位制、安装方式、管道直径、管道壁厚、管道材料、管道粗糙度、流体类型、两探头间距、流速单位、最小速度、最大速度等。只有所有参数输入正确,仪表方可正确显示实际流量值3、流量计的定期校验 为了保证超声波流量计的准确度,我们进行定期的校验,通常我们采用更高精度的便携式流量计进行直接对比,利用所测数据进行计算:误差=(测量值-标准值)/标准值,利用计算的相对误差,修正系数,使得测量误差满足±2%的误差,即可满足计量要求。该操作简单方便,可有效提高计量的准确度。电磁流量计是一种测量导电介质体积流量的感应仪表,在进行现场监测显示的同时,可输出标准的电流信号,供记录、调节、控制使用,实现检测自动控制,并可实现信号的远距离传送。 智能电磁流量计具有精度高、灵敏度高、稳定性好等优点,在供水企业中有着广泛的应用前景,特别是在大口径、安装环境好的工厂、居民区等场所,虽然智能电磁流量计的使用已经非常成熟。但是,仍有一些问题需要注意。一、信号传输问题: 电磁流量计在区域管网中运行时,可以为城市供水调度提供一定的决策信息。因此,用户对电磁流量信号的实时性和连续性提出了更高的要求。如果智能电磁流量计能完成仪器本身信号的自动转换和无线传输,减少数据采集的兼容或相互转换等困扰,那将为企业的使用提供便利,也将为仪表的推广应用增加更大的优势。二、电源问题: 目前智能电磁流量计不自带电源,造成了室外安装不方便,一旦断电,将造成用作结算水表的流量计数据缺失,这样对其断电时段缺失水量的计量与推算也就提出了新的问题。若电磁流量计能自带电源,就能从根本上解决这一问题,也将促进其在结算水表中的推广应用。三、防雷问题: 电磁流量计在雷雨天气覆盖较广的地区防雷是个重要的工作。在严格做好接地、电源保护后,在空旷地区安装的电磁流量计被雷击的概率还是很高。所以简单有效的办法是提高流量计自身的防雷性能,如不能根本性解决,则应对其内部电路进行分离保护,这样即使雷击损坏,也能降低更换成本。 气体涡轮流量计是速度式流量计量仪表的一种,其传统结构(图1)主要由壳体、叶轮支架、轴承支架、叶轮轴、轴承叶轮、导流整流器、计数装置组成。当被检测气体经过气体涡轮流量计时,气体在导流整流器中被整流和加速,然后推动叶轮进行旋转,叶轮转动的速度和进过流量计的流体流速成正比,通过一系列的减速,最后由计数装置对叶轮转动的圈数进行累加,达到流量计计量的目的。 但是通过多年的实践发现,仪表的精度除了受零部件加工精度的影响以外,和轴承选用也有很大的关系,仪表要想保持长时间的稳定运行,轴承必须有足够的使用寿命,但是,对于进行维修和维护的仪表进行故障统计分析,大多是由于轴承的失效造成了仪表的损坏,对其进行受力分析(图2)表明,传统型的流量计结构在轴承的设计方面是一个薄弱环节。 叶轮受到气流的冲击,气流对叶轮除了产生驱动叶轮旋转的推力外,还会产生一个垂直于叶轮的推力F推力,为了维持平衡,固定轴承会受到一个由轴承支架提供的反作用力F反推力。固定轴承为了支撑叶轮及轴系本身的重力会受到-个压力N反推力,浮动轴承由于阻止叶轮以固定轴承为支点进行旋转会得到一个压力T",因此,固定轴承处在一个最恶劣的工作环境之下,经过长时间的运转,在缺少润滑的情况下,固定轴承的使用寿命大打折扣。特别是在高速运转情况下,垂直于叶轮的推力F推力也会随着转速的提高而提高,固定轴承的使用状况随之更加恶化。事实也正是如此,在维修的气体涡轮流量计中,离叶轮较近的固定轴承损坏几乎占到了100%,轴承最后只剩下了内圈外圈,叶轮也因此波及,仪表不得不进行关键部件的更换,及时发现故障并进行排除还好,如果没有及时发现,造成经济上的损失我们将无法弥补。为了改善固定轴承的使用环境,轴承所承受的支撑力我们无法改变,但是,我们可以想办法改善固定轴承所受到的反作用力F反推力,因此,引入了气体推力轴承的设计。 由于金属管浮子流量计的测量管为机械结构.测最时对波动很敏感,经常会出现指针波动严重,甚至影响读数的情况。除了在测量管中加装气阻尼器之外,还可以在指针组件中增加电磁阻尼器,使指针摆动的频率、幅度大幅度降低,使指针指示稳定,刻度值读取变得容易,读取精度更高。 电磁阻尼器的工作原理。电磁阻尼器由磁钢、连接件、金属板等组装后为一体。指针的配重为导电金属铝合金,根据电磁感应定律,配重在磁场中运动,切割磁力线.必然产生感应电动势,从而在配重中产生涡电流;磁场对带电导体必然产生作用力,而此作用力恰好起到阻碍配重在磁场中运动的作用,配重运动的速度越大,产生的反作用也越大,其效果类似于阻尼器,从而使电磁阻尼器起到降低指针摆动频率、幅度的作用.达到稳定的效果。 与现有技术相比,通过增加电磁阻尼器装置,可有效改善金属管浮子流量计的使用效果,使指针的摆动频率和幅度大幅度降低,指针稳定指示,刻度值的读取变得容易,读取精度提高,既提高了效率也保证了精度。德国VSEVHM02-1流量计定制流量计准确度影响的实验分析 1实验要求 实验用钟罩式气体流量计标定装置标定DN50G65气体涡轮流量计,其准确度等级为1.5级;最小流量为Qmls:10m'/h,最大流量为Qmax:100m³/h;流量计量程比为1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2实验思路 实验以在流量计前端安装一对大小头作为扰流件,在扰流件和流量计之间安装不同长度的直管段。经过一定时间段的运行,确认标准裝置与流量计的流量偏差以及疣量计的重复性,以此分析扰流件对流量计准确度的影响。 3实脸分析 3.1在流量计.上游安装40cm直管段,下游安装19cm直管段实验 流量计上游直管段长度大于5D(25cm),下游直管段长度大于3D(15cm),实验安装图如图1所示,示意图如图2所示。 实验数据如表3所示。 从表3可以看出,扰流件安装在距流量计上游端较远时,其运行数据的流量偏差与重复性符合流量计的国家标准。 3.2在流量计上游安装29.1cm直管段,下游安装19cm直管段实验 流量计上游直管段长度较大于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图3所示. 实验数据如表4所示。从表4可以看出,扰流件安装在距流t计上游端接近5D处时,其运行数据的流量偏差(qmin≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。 3.3在流量计上游安装19cm直管段,下游安装40cm直管段实验 流量计上游直管段长度小于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图4所示 从表5可以看出,找流件安装在流量计上游端小于5D处时,其运行数据的流量偏差(qai≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。