发布时间:
浏览: 次 作者:
德国VSERS800流量计哪里卖同时我们还经营:超声波液位计基本要求 超声波液位计换能器发射脉冲超声波时,都有一定的发射开角。从换能器下沿到被测介质表面之间,由发射是超声波波束所辐射的区域内,尽可能有障碍物,因此安装时应尽可能避开罐内设施,如:人梯、限位开关、加热设备、支架等。如果有障碍物干扰情况下,安装时需要进行"虚假回波存储"。另外须注意超声波波束不得与加料料流相交。 安装仪表时还要注意:最高料位不得进入测量盲区;仪表距罐壁必须保持一定的距离;仪表的安装尽可能使换能器的发射方向与液面垂直。安装在防爆区域内的仪表必须遵守国家防爆危险区的安装规定。本安型的外壳采用铝壳。本安型仪表可安装在有防爆要求的场合,仪表必须接地。测量的基准是探头的下边沿。1、盲区 2、空仓(最大测量距离) 3、 最大量程 4、测量范围注:使用超声波物位计时,务必保证最高料位不能进入测量盲区。安装位置 在安装超声波物位计的时候,注意仪表和容器壁至少保持200mm的距离。1、基准面2、容器中央或对称轴 对于锥形容器,且为平面罐顶,仪表的最佳安装位置是容器顶部中央,这样可以保证测量到容器底部。常见安装位置的正误1、错误:换能器应与被测介质表面垂直。2、错误:仪表被安装在拱形或圆形罐顶,会造成多次反射回波,在安装时应尽可能避免安装在容器中央。3、正确1、错误:不要将仪表安装于入料料流的上方,以保证测量的是介质表面而不是入料料流。2、正确 注意:室外安装时应采取遮阳、防雨措施。搅拌 当罐中有搅拌时,超声波液位计安装尽量远离搅拌器。安装后要在搅拌状态下进行"虚假回波存储",以消除搅拌叶片所产生的虚假回波影响。若由于搅拌产生泡沫或翻起波浪,则应使用导波管安装方式。泡沫 由于入料、搅拌或容器内其他过程处理,会在某些液体介质表面形成泡沫,衰减发射信号。如果泡沫造成测量误差,应将传感器安装在导波管内,或使用雷达液位计。导波雷达液位计的测量不受泡沫的影响,是这种应用的最佳选择。气流 如果容器内有很强的气流,例如:室外安装,而且风很大,或容器内有空气涡流,您应该将传感器安装在导波管内,或使用雷达液位计或导波雷达液位计。现代工业生产中使用智能电磁流量计的领域是越来越广了,智能电磁流量计的测量效果和精度也随着制造技术和工艺的不断进步而不断提高,电磁流量计的测量原理是基于法拉第电磁感应定律:导电液体在磁场中作切割磁力线运动时,导体中产生感应电势,测量流量时,导电性液体以速度V流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,其感应电压信号通过二个或二个以上与液体直接接触的电极捡出,并通过电缆送至转换器通过智能化处理,然后LCD显示或转换成标准信号4~20ma和0-1khz输出。这样,智能电磁流量计就能测出导电流体的流量了。 我们在电磁流量计选型时,有一个重要的选型参数,那就是仪表内的衬里材料的选择,为什么电磁流量计要进行衬里,这是由智能电磁流量计测量的原理决定的。电磁流量计一般有一组线圈和两个电极,线圈的作用是给流体加上一个电场,流动的导电液体相当于一个导体,根据法拉第电磁感应定律当导体切割磁力线时会相应产生一个与速度成正比的电动势,电极的作用就是测量这个感应电动势,所以测量管内只有电极是与导电液体相连的,其他部分是内衬,要保证绝缘,电磁流量计才能正常工作。如果有磁场的那段金属管道也与液体相接触,电磁流量计所测的导电液体和金属管之间短路了,就会有导电,就会将电势导走使电磁流量计无法测量电势。所以智能电磁流量计的内部都是有衬里的。 并且也是基于这个原因,我们用电磁流量计只能来测量导电液体的流量,也就是说智能电磁流量计对于所测介质的电介常数有一个最低的要求,电导率低于阈值会产生测量误差直致不能使用,超过阈值即使有变化也可以测量,示值误差变化不大,通用型电磁流量计电介常数下限值的阈值在10-4~(5×10-1)S/CM之间,视型号而异。工业用水及其水溶液的电导率大于10-4s/cm,酸、碱、盐液的电导率在10-4~10-1s/cm 使用不存在问题,低度蒸馏水为 10-5s/cm 也不存在问题。石油制品和有机溶剂电导率过低就不能使用智能电磁流量计。 从资料上查到有些纯液电导率较低,认为不能使用,然而实际工作中会遇到因含有杂质而能使用的实例,杂质对增加电导率有利。对于水溶液,资料中的电导率是用纯水配比在实验室测得的,实际使用的水溶液可能用工业用水配比,电导率将比查得的更高,也有利于流量测量。 根据所测量的介质的不同,智能电磁流量计的衬里材料品种选择也不尽相同,普通的水性介质,比如污水、离子水等与带有腐蚀性的液体介质(酸碱盐溶液)所用的衬里材料就不能一样,包括用来测量的电极的选择也有所不同,根据经验,一般情况下选择衬里材料的指导方法如下。1.普通橡胶,天然橡胶,软橡胶,硬橡胶。 运行温度60℃,其特点就是富有弹性并且拥有不错的耐磨性能。一般用于城市供排水等领域,耐腐蚀性就相对较差。2.聚四氟乙烯,也叫PTFE,也叫F4。 比较常用的内衬材质之一,因为其化学性质稳定,所以一般用于卫生级液体或强腐蚀液体,如浓酸浓碱等。3.聚全氟乙丙烯,也叫F46。 此种材质与PTFE类似,但耐磨性能强于PTFE材质,同样介质温度最高可达100℃。4.聚氟合乙烯,也叫Fs。 与F4材质类似的特性但承受温度稍差了一些,一般介质温度不超过80℃,性价比高,成本较F4材质低。5.氯丁橡胶,也叫CR,也叫Neoprene。 其特点为耐磨性能好,且弹性非常出色,一般用于供排水、污水处理等领域。耐腐蚀性能稍差,不耐氧化是它的缺点。6.聚氨酯橡胶,又叫Polyurethane。 拥有极好的耐磨性能,但对于腐蚀性就显得能力不足了,且电磁流量计温度不得超过80℃,一般用于对耐磨要求比较高的工矿环境,如矿浆煤浆等介质的测量。7.陶瓷材质 陶瓷无疑是所有材质中最好的,绝对的高端产品,唯一缺点就是价格不接地气,制作过程复杂,对工艺要求极高,售价超高。 考虑到容积式流量测量装置结构较复杂,安装维护和校准不方便,有必要在满足精度和抗震.性能要求的前提下,采用安装和维护方便的其他形式流量测量仪表。热式气体质量流量计已在气体流量测量领域获得了成功的应用,具有无可动部件、压损小及量程比宽等特点,例如在核电厂的通风系统中,已成功地替代皮托管成为重要的测量方式。但在液位流量测量领域,热式质量流量计的应用仍具有局限性。 由式(2)可知,热丝的热散失率与流体的热导率、比热容、流速和密度有关。相对于通风系统中的空气来说,水是-种具有较大比热容、较大密度和热导率的介质。在相同的流速下,水带走的热量远大于空气,对于以恒定功率加热热端铂电阻的恒功率型热式质量流量计,为了适应水流量的测量,加热电路会采用比较高的加热功率为热端铂电阻进行加热;对于恒温差型的热式质量流量计,为了维持两个铂电阻之间恒定的温差,加热电路同样会处于比较高的加热功率状态下,且加热功率将随水流量的增大而增大。因而,无论是恒功率型还是恒温差型,加热功率的提高会对流量计的安全性和寿命有很大的影响,也使其应用环境造成一定的局限性。而恒比率式流量计由于通过调节施加在热端热电阻上的加热电流,使热端热电阻的阻值与冷端热电阻的阻值成一恒定比率,因而同恒温差式流量计相比,在测量相同流速流体的情况下,恒比率式流量计热端铂电阻的加热电流要小于恒温差式,因而其加热功率不会过高而产生仪表安全性和使用寿命方面的不利影响。对于主泵第三级密封泄漏流这种微小流量的测量,相对于恒功率式和恒温差式,恒比率式热式质量流量计具有更好的应用价值,然而对于较大液体流量的测量则并不适用。恒比率式流量计的热端铂电阻加热电流Ih与介质质量流量m的关系为: 式中Ap-一流体流经管道的截面积; As一传感器参与热交换部分的表面积; C1、C2一通过校准确定的常数; d一热电阻传感器直径; k一流体热导率; Ls一传感器损耗能量的因数; n一校准过程中通过回归确定的指数; Pr一流体的普朗特数; Rc一冷端铂电阻阻值; Rco一冷端铂电阻在0℃时的阻值; RH一热端铂电阻阻值; RH0一热端铂电阻在0C时的阻值;, r一恒比率参数(自加热系数),r= a一铂电阻的参数。 1.基本性能 热式质量流量计作为一种直接测量质量流量的智能型流量仪表,具有结构简单、体积小、数字化程度高及安装方便等优点。热式质量流量计的.测量精度一般约为±1%,重复性为±0.2%;量程比宽可达100:1,最高可达1000:1;在-40~60℃的环境温度下可正常工作;可耐受3MPa或更高的管道压力;允许介质工作温度-70~400℃;允许被测液体的流速为0~4m/s;支持HART协议。另外,具有压损小、直管段要求低和允许动态修正的特点,其响应时间较长,未采用特殊设计时可达几秒。热式质量流量计具有一体式和分体式两种.结构,在累积辐照剂量较大区域,可采用分体式流量计进行测量,信号处理部分布置于累积辐照剂量较小区域。 主泵第三级密封泄漏流正常工况下在5L/h左右,达到50L/h时报警,不用于过程控制。在电厂正常运行工况下,测点所在区域的环境温度约为50℃以下,工作压力小于0.6MPa,工作温度小于100℃,要求测量范围的量程比约为30:1,属于非1E级测点。因此,就测量要求而言,热式质量流量计适用于主泵第三级密封泄漏流量的测量。 2.抗震性能 由于主泵第三级密封泄漏流测点位于安全壳内,周围存在1E级仪表和核级管道,尽管测点本身不需要在设计基准事件工况下执行功能,但不应对其他需要执行功能的设备或仪表造成损害,因而用于该测点的仪表应满足抗震要求,在SSE地震载荷下,满足结构完整性的要求,避免放射性物质经仪表破口向环境释放以及对周围1E级仪表和核级设备产生潜在危害。 热式质量流量计结构简单,除进行抗震试验外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重点对薄弱部位进行应力分析,通常包括传感器与管道相交的节点处、螺纹连接处及法兰连接处等位置。 对某一型号热式气体质量流量计进行抗震分析,取三向峰值加速度为6g。通过应力分析表明,流量计的第一-阶自振频率大于33Hz,在地震载荷作用下,薄弱部位的计算应力值均小于规定的应力限值,从而认为其在SSE地震载荷下,结构完整性可以得到保证。 3.耐辐照性能 因主泵第三级密封泄漏流测点位于安全壳内,在电厂正常运行工况下,探头所处的环境具有一定的电离辐射存在。因而,用于该测点的仪表应能经受--定的累积辐照剂量而测量结果仍在要求的测量精度范围内。目前,对于仪表的耐辐照性能,主要采用试验法进行验证。 对某一型号分体式热式质量流量计探头进行耐辐照试验,辐射源采用钴-60,试验时间持续40h以上,累积辐照剂量约2x104Gy,辐照后进行功能试验,流量计的输出维持在测量精度范围内,表明该型流量计可以经受若干年的累积辐照剂量而不损坏。 4.安装 为便于安装和维护,流量计可采用法兰-法兰连接的形式。在一般情况下,为了满足测量精度,热式质量流量计对于前后直管段的要求较高,部分型号的流量计要求的直管段长度可达到前15D、后5D以上。但由于流量计允许动态修正,经过标定和修正后,可降低热式质量流量计的前后直管段要求。对于主泵第三级密封泄漏流的测量,热式质量流量计可满足安装和维护要求。1.施工工艺的影响与处理按照循环灌浆的原理,返回浆液要流回搅拌桶,采用2台电磁流量计分别计量进返浆管道中浆液的流量。然而.有些用户去掉返浆管上的电磁流量计,返浆管通过一个三通直接接在电磁流量计下游的进浆管上,返回浆液不返回搅拌桶,采用一台电磁流量计测量灌浆量,其结果在岩层吸浆量很小和灌浆结束阶段,浆液流过电磁流量计F的流速很小,远低于电磁流量计的流速下限,信噪比S/N很小,测量误差高达50%,无法精确计量。2.测量管道内附浆量的影响与处理 每次灌浆结束后,要及时清除电磁流量计测量管内的残余浆液,否则水泥浆液易在测量管道内产生不同程度的胶结,甚至堵塞电磁流量计测量管和相接的灌浆管道。电磁流量计测量管内的附着层会引起附加相对误差△Ɛ,实践证明其引起的误差是很大的,假定其厚度相同△ε由式(5)计算: 水泥颗粒的σɷ和水泥浆液σf相差很大,因为附着水泥层电导率极低,当附着物有一-定厚度时△Ɛ会比较大。3.介质中气泡的影响与处理 因工艺或介质本身的原因,所测液体常含--些气泡。电磁流量计属于流速型的流量方式,气泡在管道圆截面中所占据的面积百分率,几乎就等同于气泡对流量测量的影响量。此外由于气泡经过电极表面存在一个摩擦过程,由此会产生尖峰脉冲干扰电势,其值远大于正常的流量信号。通常电磁流量转换器无法有效地处理如此的干扰,轻者导致测量值不稳定,严重时仪表根本无法工作,一些缺乏经验的用户仅从工艺的要求出发,对电磁流量计的安装位置没有考虑防止气泡的产生,例如有些用户把电磁流量计安装在灌浆泵的吸入端,吸入端的浆液中常会混入成泡状流的小气泡,故电磁流量计一般要安装在泵的排出端。电磁流量计最好垂直安装,浆液自下而上流动。水平安装时要使电极轴线平行于地平线,不要垂直于地平线,因为处于底部的电极易被沉积物覆盖,顶部电极易被液体中偶存气泡擦过遮住电极表面。4.恶劣施工现场环境的影响与处理 灌浆施工现场的环境大部分时间比较恶劣,例如高温、潮湿高灰尘等,如果电磁流量计外壳的密封不良,诸如接线盒,以及一些非焊接气密封结构的外壳,时间长了冷凝水和灰尘容易积聚在电磁流量计的接线盒中,或透过密封不良的结合面渗入电磁流量计壳体中,由于电磁流量计的流量信号极其微弱(通常是几mA),冷凝水和灰尘的存在,直接的后果是导致电磁流量计转换器输入回路阻抗下降,衰减了欲输往放大器的流量信号;或者是破坏励磁回路和信号回路的绝缘,将高达几十V的励磁电压引入到低电势的信号回路中,造成电磁流量计的严重故障。为了避免此类故障的发生,可在接线盒中灌注绝缘材料,在维修和调试电磁流量计的时候一-定要避免进水,保持接线盒内的干燥与干净,使用中一定要避免浸泡在水或浆液中。涡轮流量计利用置于流体中的叶轮的旋转角速度与流体流速成比例的关系,通过测量叶轮的转速来反映通过管道的流体体积流量大小,是流量仪表中比较成熟的高准确度仪表之一。 流量计内有经过精密加工的叶片,它与一套减速齿轮和轴承一起构成测量组件,支撑涡轮的两个不锈钢自润滑轴承,保证该组件有较长的使用寿命。流量计亦可选用外部润滑油泵润滑轴承,但注意不能过量。 流量计露天安装,由于流量计大部分是电子显示,表头内有电路板,长期露天放置,容易造成电路板损坏受潮,液晶屏不显示,或者烧坏电路板。建议安装计量仪表防护装置。 涡轮流量计在安装过程中,不能敲打表具。流量计受硬力冲击,导致表具损坏。安装流量计前,一定要吹扫,吹扫过程中一定不能带着表具,管道中的焊渣容易打坏涡轮流量计的叶轮,造成表具不计量或者计量不准确。 为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。 涡轮流量计在使用前一定要加润滑油,但是不能加多,在燃气气质并不是太干净的环境中,润滑油过多容易使气质中的杂质粘附在卡箍式涡轮流量计的叶轮上,从而造成计量不准确,时间长了,容易磨损表具。流量计工况与标况(立方与标方)如何换算 m3/h简单几招解决涡轮流量计不准1、水源脉动流影响流量波动性比较大。 解决办法:增加泵和涡轮流量计之间的直管道距离,使流量稳定。2、涡轮流量计安装位置离阀门或弯管位置太近,当原料经过阀门或弯管部分,造成流量波动。 解决办法:此时应该远离阀门和弯管位置,保证一定的前后直管段是解决问题的好方法。3、涡轮流量计附近有电机,变频器,强电流之类的干扰源。 解决办法:流量计仪表接地,或加滤波电容。如果问题还是解决不了,最好的办法就是远离干扰源。4、涡轮流量计无流量显示:首先检查线路是否存在问题,如信号线脱落,有断线等。将传感器和信号放大器分离,信号放大器与仪表连接,用铁质金属在取信号的放大器底部距离2~3mm距离来回划动,如仪表有显示,则说明显示部分无问题。 解决办法:请将流量传感器从管道卸下,检查流量计叶轮是否被缠住或叶轮出现破损现象。5、流量计显示流量比实际流量小:一般造成这个问题的原因是叶轮旋转不滑快或叶片断裂。 解决办法:将流量计从管道拆除,检查流量计是否被缠住或有破损现象。6、涡轮流量计显示误差比较大:首先检查流量传感器系数即K值和仪表其他参数是否设置正确;有条件的情况下,用电子秤进行实际标定校准。 解决办法:如流量重复性差或根本无法校准,可与供货商联系。1.机械干扰 在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确性。2.紫外线的伤害 由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3.感应探头易损坏 旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。1.一般要求:●供电电缆与电磁流量计信号电缆分开铺设,电缆槽分开,穿线管分开.●电缆进入一次表采用挠性防爆软管或者波纹管进行保护.护线帽和密封接头要拧紧,必要时加防水胶带做二次保护.穿线管检查是否有毛刺,如果穿线管较粗,则采用防火胶泥进行封堵.●电缆在入口处留出U型弯,同时穿线管出线口要低于表头,防止雨水进入表头.●动力电缆如果为单股铜芯则可以不用压线鼻子,但是必须标识零线,火线及接地线及来线位置.●信号电缆一般为多芯软线,必须压线鼻子或者涮锡,同时标识位号及来线位置.在系统侧电缆留有一定余量,屏蔽层在系统侧单侧接地.●无论供电电缆还是信号电缆,在接线前必须进行校线.●现场一次表入水口及出水口双侧接地.接地线采用绿,黄双色线,确保接地牢靠,同时接地极为等电位.2.详细接线说明: 电磁流量计接线一般有以下几种信号:供电接线,4~20mA信号输出,上限报警输出,下限报警输出,通讯信号等●电磁流量计一般采用220V交流供电或者24V直流供电.本项目污水流量计采用220V交流供电.●该电磁流量计为四线制,自控系统卡件接收4~20mA信号按照四线制方式连接.●上,下限报警输出均为二次表内集电极开路输出,为无源输出,自控系统DI卡输出24V.实际设计时报警信号不接入自控系统,在自控系统内对瞬时流量设置高,低限报警值.●通讯信号一般采用485通讯.采用两线制带屏蔽通讯专用电缆.●如果采用脉冲信号,则需要自控系统提供脉冲卡件.本项目从成本角度考虑采用4~20mA信号.德国VSERS800流量计哪里卖 热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。 热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。 浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为 式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。 如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。流量积算仪主要用于各种液体、蒸汽、天然气及其他气体的流量测量。由于流量积算仪功能多,使用非常复杂,使用时容易出现问题。一、设置中易出现的问题1.介质及介质状态的设置(1)错误地设置介质,例如,当介质为蒸汽时,设置为空气。(2)错误地设置介质状态,例如,当蒸汽状态为过热蒸汽时,设置为饱和蒸汽。2.流量信号输入的设置 一般为频率信号输入,也有模拟信号输入。容易出现的问题是输入错误的信号,如本应输入频率信号却输入了模拟信号,或本应输入模拟信号却输入了频率信号。3.温度、压力信号输入的设置 温度信号输入一般是模拟信号,可以设置为(4~20)mA电流信号、(0~l0)mA电流信号、(1~5)V电压信号、Pt100铂电阻信号。容易出现的问题是设置了错误的信号,如本应设置模拟信号却设置了频率信号,或本应设置铂电阻信号却设置了(4--20)mA电流信号。 压力信号输入一般是模拟信号,可以设置为(4--20)mA电流信号、(0~10)mA电流信号、(1~5)V电压信号。容易出现的问题是设置了错误的信号,如本应设置(1~5)V信号却设置了(4~20)mA电流信号。4.配套流量计的设置 通常可以设置为孔板流量计、涡街流量计、涡轮流量计。由于流量计原理不同,因此,在流量积算仪的流量计算中.不同类型的流量计有不同的算法,如果流量计选型错误,则流量计算必然出错。5.温压补偿的设置 应用在蒸汽介质流量计量时,需进行温压补偿。例如一台流量积算仪,当用于过热蒸汽时.需要同时进行温度补偿和压力补偿;当用于饱和蒸汽时,由于一一对应关系,只能对其中一个输入信号进行补偿,根据现场情况,只选择温度补偿或只选择压力补偿。如果应用在天然气介质流量计量中.需同时进行温度补偿和压力补偿。6.输入信号范围的设置 温度输入信号、压力输入信号、流量输入信号分别设置自己的测量范围,流量积算仪设置的流量测量范围、温度测量范围、压力测量范围应分别大于现场的流量范围、温度范围、压力范围。例如,设置最大流量1O00m3/h,但实际测量流量为2000m3/h,超过了积算仪中设置的流量测量范围,则流量计算出错。二、接线时易出现的问题 对于不同的输入信号.需要选择不同的接线端子。但在实际应用中,由于操作比较复杂,接线时容易出现错误。例如流量积算仪使用在饱和蒸汽下,流量积算仪内部设置为温度补偿,而在实际接线时将压力输入信号作为补偿信号接到流量积算仪,造成接线错误,从而造成流量计算错误。 综上所述.要正确使用流量积算仪,需要专业人员严格按照现场操作条件进行设置和接线,以保证流量积算仪的正确使用;同时,流量计量人员应按照用户要求.模拟流量积算仪现场使用条件进行流量积算仪的检测。1、涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力等仪表不能正常工作或不能准确测量。2、振动也是该类仪表的一大劲敌。因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜选用的。即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。3、介质温度对涡街流量计的使用性能也有很大的影响。如压力应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。涡街流量计是一种比较新型的流量计,处于发展阶段,还不很成熟,如果选择不当,性能也不能很好发挥。只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。热式气体质量流量计是流量计发展历史的一次重大变革,使流量测量直接转变为质量流量的测量.根据测量时热式质量流量计所使用的流量测量元件的加工工艺的不同,常用的传感器探头可以分为:热线热式流量传感器、热敏电阻式传感器、半导体集成电路式传感器等. 热式流量传感器探头对流体运动形态的影响较小,测量范围大,响应性能也很好,但是,这种类型的传感器探头对机械强度要求较高、在传感器材料选择上受到较大的限制;同时,加热温度仅能达到400~500℃.此外,由于流体中的微小颗粒容易粘附到热线上,抗污染腐蚀能力较差,易损坏使热线的特性发生不稳定性变化,热线一致性差,难以进行批量生产. 半导体式传感器探头是以单晶硅为基体,使用硅微机械加工而成的微桥结构.半导体式传感器探头多用于0~25mL/min 的小流量气体的测量,在本课题中所需要测量的流量范围较大,不能满足使用要求.图2-2是典型的半导体式传感器探头结构. 热电阻式传感器主要有两个探头:一个流量探头(Rp),一个温度探头(Rtc).目前,市场上所使用的大部分热式气体质量流量计传感器探头主要是基准铂电阻.工作的时候,两个探头以一定的机械结构固定于管道中,可以通过热源探头上电压信号量或者加热功率的改变来衡量流量的变化.工作中要求两个传感器探头对流量的响应尽可能的快,且要保证散热同步,传感器探头的灵敏度最高,这为传感器探头的设计增添了一定的难度. 如图2-3铂电阻的典型结构所示,铂电阻在在管道内与流体进行热交换的过程中,铂电阻的表面和内部铂丝之间存在热阻,阻碍热量的交换.因此,必须从铂电阻元件的选择和传感器结构设计两方面进行设计,尽量减小铂电阻内部和表面的热阻.如果热阻较大,热敏电阻表面和内部就会存在很高的温度差高,出现流量探头和温度探头已经达到恒定温差的假象,会严重影响控制电路正常工作,使测量的结果与管道流量的实际状况出现较大偏差,所以减小探头的热阻是设计热电阻式传感器的关键.电磁流量计中通常采用两类基本的励磁波形,一种是方波,另一种是正弦波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接测量管道产生巨大的涡流损耗和磁滞损耗,同时也给测量带来由电磁感应引起的同相和正交干扰。在方波励磁模式下,由于电极会出现极化现象,导致采集的感应电压信号不够准确。方波励磁模式中,在测量非导电液体时,相对较高的励磁频率,比如10Hz到200Hz,可以用来获得好的动态特性或者获得合理的信噪比,但是这种励磁方式有一个严重的问题,其变压器效应会引起流量计的零点漂移并影响测量精度。 为了避免以上极化现象和变压器效应,减少干扰,本文研究中采用了一种三值方波励磁方式,如图4-5所示,线圈的励磁信号有正、零和负三种值。 本文采用固态继电器和直流电源的方式产生三值方波励磁电压,其结构如图4-6所示。 在该电磁流量计励磁方案中,使用LabJackU12控制输出三值方波的模拟量电压信号,通过4个固态继电器组成的开关系统,直接作用到励磁线圈上。超声波流量计根据声道布置形式可以分为单声道超声波流量计和多声道超声波流量计。单声道超声波流量计在测量管道上只安装一对超声波换能器,多声道超声波流量计则在测量管道上安装多对超声波换能器,包含多个独立的超声波传播路径。多声道超声波流量计对于流场的适应能力更强,可以提高流量计的测量精度;然而单声道超声波流量计在小管径场合应用更为广泛,而且通过反射镜的应用单声道超声波流量计的声道布置形式越来越复杂,测量精度也随之提高。根据声道的传播方式,常用的单声道超声波流量计主要有Z型流量计,U型流量计,V型流量计,N型流量计和三角型流量计,不同传播类型的单声道超声波流量计声道示意图如图4-1所示,其中红色虚线表示声波传播路径。 多声道超声波流量计采用数值积分的方法提高流量修正系数的精度,可以解决单声道超声波流量计测量不确定度误差大的问题。多声道超声波流量计通常采用Gauss积分方法计算式(2-7)中各声道位置ri/R和相应的权重系数wi。在相同采样点数、节数自由的情况下,Gauss 型数值积分方法相对于辛普森公式和梯形公式等插值型积分方法计算精度更高。对于圆形测量管道的超声波流量计中声道位置和相应权重系数的计算一般采用Gauss-Jacobi积分方法。按照 Gauss-Jacobi 积分方法的零点确定各声道高度,按积分方法中的权重系数计算声道权重系数。 实际中各声道上速度分布与理想的代数多项式表示的流速分布差异很大,特别是无法体现管壁处流速为零的特性,导致流量的积分结果偏高,影响流量计的测量精度。为了使计算结果更加接近于圆形管道内液体充分发展的真实值,提出了采用最佳圆截面算法(OWICS)计算声道位置ri/R和权重系数wi的方法,最佳圆截面算法其实是基于正交多项式的 Gauss 积分方法。Gauss-Jacobi和OWICS积分方法计算各声道位置和权重系数如表4-1所示.德国VSERS800流量计哪里卖1.根据各检定点每次检定时标准器测得的实际体积,通过测量标准器和流量计的温度、压力、压缩因子等参数.计算出各检定点每次检定时标准器换算到流量计的累积流量和各检定点每次检定时流量计显示的累积流量,计算流量计各检定点单次检定的相对示值误差.2.对于某种型号的电磁流量计,需要计算被检流量计各流量点单次检定的引用误差.3.当标准器显示为累积流量时,可根据各检定点每次检定时间,计算流量计各流量点单次检定的瞬时流量相对示值误差.4.使用质量法装置检定时,需测出液体的密度,并考虑密度的空气浮力影响,把电子秤显示的质量换算到实际体积.5.计算流量计各检定点的相对示值误差,取流量计高区和低区各检定点相对示值误差中最大值作为流量计的相对示值误差.6.对于某种型号电磁流量计,需要计算被检流量计各流量点单次检定的引用误差。取流量计各流量点的最大值为引用误差的误差。7.带有脉冲输出的流量计(如涡街流量计或涡轮流量计)检定后需计算各检定流量点的系数和K系数的相对示值误差.