欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEEF0.1流量计电子样册

发布时间: 热度:
德国VSEEF0.1流量计电子样册同时我们还经营:高流速时,电磁流量计中的流体为湍流,且雷诺数越大,流体小尺寸结构越小。但流体整体向前的流速不会因为湍流而减小,这样的情况下可知电...

德国VSEEF0.1流量计电子样册同时我们还经营:  高流速时,电磁流量计中的流体为湍流,且雷诺数越大,流体小尺寸结构越小。但流体整体向前的流速不会因为湍流而减小,这样的情况下可知电磁流量计流体中的非导电物体的尺寸更小。当含水率不变,非导电物体物质半径变小后对电磁流量计的整体流速分布不变、对流量计的磁场分布影响较小。根据式(1)可知,电磁流量计中非导电物质的半径大小对流量计的权重函数是有影响的。  当电磁流量计中心横截面内含有M(M=0,1,2.,-.)个油泡时传感器的权重函数分布情况,本文算例设定M=3权重函数分布情况计算方式。图1为电磁流量计传感器截面内存在3个球形油泡时的结构模型图。其中,x轴与y轴与图1描述--致,图1中只显示了测量区域部分,测量区域流体中存在3个油泡。y正半轴、负半轴与管壁的交点是流量计的电极位置。  图1中3个油泡相互不重叠,此时传感器内部感应电势仍满足Laplace方程。为了对该问题进行求解,需建立2种坐标系,一种是以传感器中心为原点建立的二维直角坐标系(x,y),另一种是以各个油泡中心为原点建立的M个二维极坐标系(ri,θi)。首先在二维直角坐标系下对该问题进行求解(本例M=3),求解感应电势方程时需借用一个辅助的格林函数G,G满足Laplace方程且边界条件  式中,R为电磁流量计半径的长度值;მG/an为电势在半径方向上的导数;δ(θ)为电势G在流量计管壁处所满足的条件,其值仅在电极表面处不为0。当流体中存在油泡时,G表达式为   式中,R为测量管的半径;x与y分别表示测量区域中的位置。  当电磁流量计流体中存在3个油泡时,G=G+G1+G2+G3图2显示了流量计流体截面中存在3个不重叠的油泡时,流量计截面内部权重函数wy分布图;从式(2)以及仿真图中可以发现油泡所在位置权重函数值是0。当然,存在多个油泡分布在不同位置流体中时权重函数分布情况也可以用上述方法计算。  仿真实验中,设定不同大小的非导电物质对电磁流量计权重函数进行仿真,如图3所示为不同大小非导电物质对电磁流量计权重函数的影响。图3中左边的分别为权重函数分布图,右边分别为权重函数等势图,其中R单位为cm。从图3中可见,当电磁流量计中的非导电物质半径越来越小,对电磁流量计的权重函数的影响就越小。  为了更清楚地揭示电磁流量计的权重函数与流量计中非导电物质半径之间的关系,定义c为非导电物质对流量计权重函数的影响的评价指标式中,Wxy为含有油泡等非导电物质时电磁流量计在测量区域坐标(x,y)的权重函数;Wxy0为电磁流量计不含非导电物质时测量区域坐标(x,y)的权重函数;A为权重函数区域(测量区域)。  图4为不同大小非导电物质对流量计权重函数的影响分析图。图4中横轴为非导电物质半径,纵轴为权重函数的影响因子c。从仿真结果可以看出流体中的非导电物质半径较小时,对电磁流量计的权重函数影响越小。在本例中,当流体中非导电物质小于0.02R时,对电磁流量计的权重函数分布几乎没有影响。1.Modbus通讯协议概述   Modbus协议是应用于金属管浮子流量计电子控制器上的一种通用协议。通过此协议,控制器相互之间控制器经由网络(例如以太网)和其他设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控,减少了人力成本,提高了生产效率。  Modbus协议采用主从工作方式,允许一台主机和多台从机通信,每台从机地址由用户设定,地址范围为1~255。通信采用命令,应答方式,每一-种命:令帧都对应一-个应答帧。命令帧由主机发出,所有从机都将收到报文,但只有被寻址的从机才会响应命令,返回相应的应答帧。如果命令帧中寻址地址为0,则视为全局广播,所有从机把它当一条命令执行,不返回应答帧。 2.Modbus网络通讯传输模式   Modbus网络通讯可以设置为两种传输模式:ASCII模式或RTU(RenoteTeminalUnit)模式。笔者介绍的流量计采用的是RTU模式。RTU模式主要优点是:在同样的波特率下可比ASCII方式传送更多的数据。 RTU模式中字节的格式如下: 编码系统:8位二进制,十六进制0-9,A-F。 数据位:1个起始位;8个数据位;奇/偶校验时1个停止位,无奇偶校验时2个停止位。 错误校验区:循环冗余校验(CRC)。 开始和终止都需要至少35个字符时间的停顿间隔。 3.Modbus功能码   Modbus定义的功能代码范围为1~127,不同功能的设备往往只使用其中的一部分。在主机要求传输中,功能代码告诉从机要执行一一个什么动作。在从机响应传输中,如果从机发送的功能代码与主机发送的功能代码相同,则表明从机已执行所要求的功能;如果不同则表明从机没有执行所要求的功能,返回了一个错误信息。   金属管浮子流量计设计在通讯过程中用03H(读取内部寄存内容和10H(刷新多个寄存器内容)两个功能。流量积算仪主要用于各种液体、蒸汽、天然气及其他气体的流量测量。由于流量积算仪功能多,使用非常复杂,使用时容易出现问题。一、设置中易出现的问题1.介质及介质状态的设置(1)错误地设置介质,例如,当介质为蒸汽时,设置为空气。(2)错误地设置介质状态,例如,当蒸汽状态为过热蒸汽时,设置为饱和蒸汽。2.流量信号输入的设置  一般为频率信号输入,也有模拟信号输入。容易出现的问题是输入错误的信号,如本应输入频率信号却输入了模拟信号,或本应输入模拟信号却输入了频率信号。3.温度、压力信号输入的设置  温度信号输入一般是模拟信号,可以设置为(4~20)mA电流信号、(0~l0)mA电流信号、(1~5)V电压信号、Pt100铂电阻信号。容易出现的问题是设置了错误的信号,如本应设置模拟信号却设置了频率信号,或本应设置铂电阻信号却设置了(4--20)mA电流信号。  压力信号输入一般是模拟信号,可以设置为(4--20)mA电流信号、(0~10)mA电流信号、(1~5)V电压信号。容易出现的问题是设置了错误的信号,如本应设置(1~5)V信号却设置了(4~20)mA电流信号。4.配套流量计的设置  通常可以设置为孔板流量计、涡街流量计、涡轮流量计。由于流量计原理不同,因此,在流量积算仪的流量计算中.不同类型的流量计有不同的算法,如果流量计选型错误,则流量计算必然出错。5.温压补偿的设置  应用在蒸汽介质流量计量时,需进行温压补偿。例如一台流量积算仪,当用于过热蒸汽时.需要同时进行温度补偿和压力补偿;当用于饱和蒸汽时,由于一一对应关系,只能对其中一个输入信号进行补偿,根据现场情况,只选择温度补偿或只选择压力补偿。如果应用在天然气介质流量计量中.需同时进行温度补偿和压力补偿。6.输入信号范围的设置  温度输入信号、压力输入信号、流量输入信号分别设置自己的测量范围,流量积算仪设置的流量测量范围、温度测量范围、压力测量范围应分别大于现场的流量范围、温度范围、压力范围。例如,设置最大流量1O00m3/h,但实际测量流量为2000m3/h,超过了积算仪中设置的流量测量范围,则流量计算出错。二、接线时易出现的问题  对于不同的输入信号.需要选择不同的接线端子。但在实际应用中,由于操作比较复杂,接线时容易出现错误。例如流量积算仪使用在饱和蒸汽下,流量积算仪内部设置为温度补偿,而在实际接线时将压力输入信号作为补偿信号接到流量积算仪,造成接线错误,从而造成流量计算错误。  综上所述.要正确使用流量积算仪,需要专业人员严格按照现场操作条件进行设置和接线,以保证流量积算仪的正确使用;同时,流量计量人员应按照用户要求.模拟流量积算仪现场使用条件进行流量积算仪的检测。1.涡轮流量计的始动流量值qvmin很大程度上取决于轴和叶轮前后轴承间的机械摩擦阻力矩7b,而它是由轴承与轴的微小间隙内流体与固体壁面的粘性摩擦引起的,且内部流体可认为始终处于层流状态。Tb越小,qvmin也越小,因此为了使涡轮流量传感器在小流量测量范围内能够体现良好测量性能,最重要的是要减少轴和轴承之间的机械摩擦。2.流体介质密度ρ与qvmin值成反比,ρ越大,则qvmin越小。液体密度受温度影响不大,相比之下温度的变化会较大程度改变气体密度,所以测量气体时要留意温度因素,以防引起传感器特性曲线的变化。3.同样条件下,叶片安装角β越大,则qvmin越小。  当被测流体流量大于qvmin后,流量继续增加会使叶轮旋转角速度加快,此时流体因素阻力矩与机械摩擦阻力矩相比占据主要地位,故可认为Tb=0。由于流体流动状态不尽相同,而涡轮流量计传感器实际的特性曲线受流体流动状态影响.  气体涡轮流量计准确度等级为1.0级,在音速喷嘴法气体流量标准装置上检测时出现绝大多数不合格的问题,而之前并未:出现类似情况,该品牌流量计的合格率很高,通过对基表的检测与高频脉冲输出的检测,二者误差一致,且均为负误差,仪表显示与输出均正常。表1为误差最大的一台气体涡轮流量计高频脉冲输出误差和基表机械显示部分的误差值。   通过对标准装置的自检,并未发现异常,装置工作正常。为了保证检测的可靠性,将该批仪表在.2000L钟罩式气体流量标准装置上进行了复检。音速喷嘴法气体流量标准装置与2000L钟罩式气体流量标准装置的系统误差在0.3%以内。通过复检发现气体涡轮流量计的示值误差在不断变化,重复性较差,随着检测时间的延长,示值误差不断减小,向正方向发展,考虑到音速喷嘴实验室的环境温度为10.5℃,钟罩实验室温度为20.1℃,因此进行恒温.后再进行试验。恒温后再次对气体涡轮流量计进行检测,表2为该台气体涡轮流量计的高频输出误差。   通过表2可以发现在恒温后的检测结果误差发生了较大的变化,重复性也较好,考虑到两套装置的系统误差不超过0.3%,但实际检测结果最大误差偏移达到了2.30%,如此之大的偏移量并不是标准装置所引起的。将该台气体涡轮流量计马上拿到音速喷嘴气体流量标准装置上进行复测,所用喷嘴未改变,检测结果见表3。   从表3可以发现在没有对仪表经过任何改动的情况下,在同样的装置下,仪表的示值误差合格,且和之前在装置上检测的误差发生了较大的偏移。通过分析实验中各个影响因素,发现变化较大的只有温度,为了确认影响因素为温度,将该流量计在音速喷嘴实验室10.5℃的环境温度下恒温,恒温后再进行实验,检测结果见表4。   通过恒温后的气体涡轮流量计的示值误差与最开始检测的误差相接近,说明温度变化对仪表的误差产生了较大的影响。通过对送检用户的询问,由于用户是外地送检,出发较早,且送检车辆空间有限,所以在送检前一天晚上就将部分仪表的外包装拆掉,并将表装车,放置在室外,第二天早起送检,虽然在检测之前进行了短时间恒温,但表体温度仍然较低。电磁流量计的空管报警是用实测传感器中的电导率来做判断的。  不同的流体具有不同的电导值电阻值空管检测实际上是检测被测导电液体的电阻与实验导电液体电阻的比值液体的相对导电率是否超出阈值。超出阈值就意昧着被测流体电导率远低于实验液体的电导率相当于空管。空管报警阈值的默认值尾 999.9%。  空管量程修正是为测量相对电导率而用的。在传感器充满试验液体情况下修正系数使电导比为一个确定值例如试验液体是水其中导率约为100μScm可修正为100当被测液体电导率为 5μScm 相对的电导比则大约显示2000%。如果试验液体水的电导比修正为10。那么被测液体电导率为5μScm时相对电导比则大约显示200%。  电磁流量计报警阈值设置是选择空管报警灵敏度范围的。最大阈值可设为999.9%。如上例被测液体显示2000%时发出报警显示200%时不报警。因此欲使电导率5μScm在显示电导比200%时发出报警需要设阈值在200%以下。空管报警量程的默认值为100%。电缆接头中的保护塞只能在准备安装电缆时拆除.  DN3至DN8[1/10"至5/16"]的法兰型电磁流量计传感器,应采用DN10[3/8"]的配对法兰.这样DN3,4,6或者8[1/10",5/32",1/4"或者5/16"]的管道就会与仪表成为一体.  此外,DN3至DN8[1/10"至5/16"]法兰型传感器, 还可使用DN15[1/2"]的配对法兰.  石墨不可用于法兰或者工艺连接件垫圈,因为在一定条件下,仪表管道内部可能形成导电涂层.管路中应避免出现真空冲击,以防止可能对衬里(PTFE)以及仪表造成的损坏.配对法兰的垫圈表面  安装中,平行配对法兰的垫圈材料必须适于介质和操作条件.只有这样才可以避免泄漏.为了确保最佳的测量结果,须保证传感器垫圈应法兰同心.保护板  保护板用于防止衬里的损坏.只有在传感器将安装在管路中时才可以拆除保护板.必须谨慎小心,确保衬里未在安装过程中脱落或者损坏, 造成泄漏.法兰螺栓紧固扭矩  安装螺栓应按照通常的方式平均紧固,不可在电磁流量计某一侧过度紧固.我们建议螺栓在紧固之前添加润滑油,并交叉紧固,如上图一所示. 在第一轮紧固过程中,螺栓拧紧50%,在第二轮中提高至80%,最后使用最大扭矩紧固.不应超过最大扭矩见表一,表二德国VSEEF0.1流量计电子样册电磁流量计是一种用来测量导电介质体积流量的仪表。为了确保电磁流量计测量的准确性以及工作的稳定性,需要定期对其做一次全面检查,接下来开流仪表来给大家说说检查的具体内容。1.零点检查  整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。2.连接电缆检查 该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3.转换器检查  该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整,设定值检查,励磁电流测量,电流/频率输出检查等。4.电磁流量计传感器检查  测量励磁线圈的电阻,测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度,以估算清洗附着层前后因流动面积变化引入的流量值变化。德国VSEEF0.1流量计电子样册1、插入式涡街流量计可测量蒸汽,气体,液体的体积流量和质量流量;2、无机械运动部件,测量精度高,结构紧凑维护方便;3、压力损失小,量程范围宽;范围度达1:25;4、采用消扰电路和抗振传感头;5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;6、可测介质温度达+250℃。7、可实现不断流拆装传感器,可实现放大器与传感器分离(分离距离15m);8、SSP自适应频谱波技术 小漩涡采集 模块化设计 保证产品的高可靠性和一致性9、插入式涡街流量计内置完善的抗干扰 多级保护电路 有效消除振动干扰 温度压力检测及补偿单元10、兼有二线电流和三线脉冲输出功能 具备HART功能 可远程参数设置和调试

您如果需要德国VSEEF0.1流量计电子样册的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网