欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSERS100流量计联系

发布时间: 热度:
德国VSERS100流量计联系同时我们还经营:为了适应仪表网络化的发展方向,在系统设计时我们要根据实际需要为电磁流量计配备合适的通信接口.在当今单片机系统的通信中,RS232和RS485标准...

德国VSERS100流量计联系同时我们还经营:为了适应仪表网络化的发展方向,在系统设计时我们要根据实际需要为电磁流量计配备合适的通信接口.在当今单片机系统的通信中,RS232和RS485标准总线应用最为广泛,技术也最为成熟.RS232用来连接两台计算机(微处理器)之间的串口通信,当我们需要一个更长的距离或者比RS232更快的速度下进行传输的时候,RS485就是一个很好的解决办法.另外,RS485连接不限于仅仅连接两台设备.根据距离,比特率和接口芯片,我们可以用单一导线连接最多256个节点.为了使电磁流量计的应用范围更加广泛,我们选用RS485标准总线来实现仪表和外部系统的通信.  RS485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线.该规范满足所有RS422的要求,而且比RS422稳定性更强.具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V).  接收器输入灵敏度为士200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV.最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、+5V(最大值).  驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器.对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高.RS485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375).  采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻.RS485已经成为POS、工业以及电信应用中的最佳选择.较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输.更高的接收器输入阻抗还允许总线上挂接更多器件.  因RS485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口.因为RS485接口组成的半双工网络一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输.RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB.9(孔),与键盘连接的键盘接口RS485采用DB.9(针).  通信接口电路如图3.13所示,我们选用MAX485作为系统的通信接口芯片.MAX485是MAXIM公司推出的支持RS485协议的低功耗收发器,它的驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率.它是用于RS.485通信的半双工低功率收发器件,包含一个驱动器和一个接收器,具有输入接收器和输出驱动器使能管脚.使用一个半双工连接的难点就是控制每个驱动器在什么时候被启用,或者处于激活状态.当一个驱动器在传输的时候,必须直到它完成传输都保持被启用状态,然后在一个应答节点开始响应之前切换到禁用状态.MAX485的控制端RE和DE短接,这样用一个信号可以控制两种状态:接收和发送.RE和DE为“l”时,发送端接通,数据经DI脚后,变成传送的信号送到传输线.RE和DE为“0”时传输线上的信号经MAX485,当处于发送状态时,数据信号经发送端DI,在输出端A和B上交替出现高电平:当处于接收状态时,A和B上交替的高电平信号经MAX485转换成高低电平信号经RO输出.在电磁流量计传输过程中,交替的高电平保证通信传输回路中始终有电流,能实现可靠通信.1.为了保证电磁流量计测量管内充满被测介质,变送器最好垂直安装,流向自下而上.尤其是对于液固两相流,必须垂直安装。若现场只允许水平安装,则必须保证两电极在同一水平面。变送器两端应装阀门和旁路。2.电磁流量计信号比较弱,满量程时只有2.5~8mV,且流量很小时,只有几微伏,外界稍有干扰就会影响到测量精度。因此,流量计的外壳、屏蔽线、测量导管都要接地。并要单独设置接地点,决不能连接在电机、电器等公用地线或上、下管道上。3.为了避免干扰信号,安装地点要远离一切磁源(如电机、变压器等),不能有震动。变送器和转换器之间的信号必须用屏蔽导线传输。不允许把信号电缆和电源线平行放在同一电缆钢管内。信号线越短越好,长度一般不得超过30m。转换器应尽量接近变送器c4.为了避免流速分布对流速的影响,产生测量误差。流量调节阀应设置在变送器下游. 因此,在电磁流量计前必须有5~10D左右的直管段,以消除各种局部阻力对流线分布对称性的影响。根据SH/T3104-2000《石油化工仪表安装设计规范》中规定涡街流量计的安装要求如下:(1)测量液体时涡街流量计应安装于被测介质完全充满的管道上。(2)涡街流量计在水平敷设的管道上安装时,应充分考虑介质温度对变送器的影响。(3)涡街流量计在垂直管道上安装时,应符合以下规定:①测量气体时,流体可取任意流向②测量液体时,液体应自下而向上流动。(4)涡街流量计下游应具有不小于5D(流量计直径)的直管段长度,涡街流量计上游直管段长度应符合以下规定:①当工艺管道直径大于仪表直径(D)需缩径时,不小于15D;②当工艺管道直径小于仪表直径(D)需扩径时,不小于18D;③流量计前具有一个90°弯头或三通时,不小于20D;④流量计前具有在同一平面内的连续两个90°弯头时,不小于40D;⑤流量计前具有不同平面内的连接两个90°弯头时,不小于40D;⑥流量计装于调节阀下游时,不小于50D;⑦流量计前装有不小于2D长度的整流器,整流器前应有2D,整流器后应有不小于8D的直管段长度。(5)被测液体中可能出现气体时,应安装除气器。(6)涡街流量计应安装于不会引起液体产生气化的位置。(7)涡街流量计前后直管段内径与流量计内径的偏差应不大于3%。(8)对有可能损坏检测元件(旋涡发生体)的场所,管道安装的涡街流量计应加前后截止阀和旁路阀,插入式涡街流量计应安装切断球阀。(9)涡街流量计不宜安装在有震动的场所。1.动态励磁技术  所谓电磁流量计动态励磁技术,就是在三值矩形波励磁的基本前提下,根据现场流体状态对调整励磁频率进行适当的调整,从而提高测量的稳定性。现阶段,因为T业施工现场管路比较复杂,阀门、弯头、分支管以及变径管等对流体流态的影响比较大,并且支管路比较短,这样就不足以消除以上组件对流体的扰动。在这一工作环境下,通常电磁流量计稳定性比较差,这样就需要手动设置阻尼系数来提高测量的稳定性。但是阻尼会使流量测量跟踪速度比较慢,并且没有办法及时反应流量的变化,而动态励磁技术可以很好的解决这一-问题,倘若体波动比较大,就需要自动增大励磁周期,提高测量稳定性。对于比较复杂的环境,应该采用动态励磁技术与阻尼设置两者相结合的方式来提升液体测量的稳定性。2.信号处理系统  所谓信号处理系统,就是前置放大电路对接收的流量信号进行有效处理,并且在抑制噪声和干扰的时候,对收到的微弱流量信号进行放大。同时采用整形电路将差动的双端流量信号转变成单端流量信号,采用A/D转换电路将流量信号转变成数字量,随后将数字量进入单片机对数字进行计算,从而得到流速值和流量值。而智能信号处理系统能够很好的解决这些问题,首先对液体的电导率进行检测,随后根据电导率自动的选择波电容、电阻等,对不同电导率液体流量进行测量,从而达到提高测量精度的目的。3.误差修正技术  针对电磁流量计的误差,应该采用零点校正与基本误差修正相结合的方法,公式如下:V=kE-V0;其中V代表液体实际流速;k代表基本误差修正系数,E代表实测流速转换的数字量,V0代表零点偏移量。在进行误差修正的时候,应.该根据流量计传感器特性进行流量分段修正方法的引进,并且根据《电磁流量计》的规章制度,对流量检定点进行划分,.例如:Qmax(流量测量上限)、Qmin(流量测量下限)等,并且对其进行分阶段性的修正,从而就能有效满足测量精度的具体要求。  涡街流量计与流体密度无关,在测流量时,考虑气体或蒸汽温度、压力变化对密度的影响,需不需要进行密度、温度压力补偿,从以下几个方面进行探讨。(1)测量介质为液体,且流量以质量流量表示。由于测液体流量时,流量指示一般为质量或重量流量,漩涡流量计由漩涡频率-流速-体流量X密度=质量流量,当指示值以质量流量表示时,刻度系数中包含密度的因素,所以密度变化对指示值有影响,必须进行密度修正。(2)测量介质为气体,且以标准状态下体积表.示。  气体流量一般习惯均以标准状态下体积表示,刻度为Nm³/h,但工作时由漩涡频率→流速→工作状态体积再折算成标准状态下体积。作为一台漩涡流量计,一旦折算系数确定了,那么流体只有处在一个工作压力、温度下流量指示值才准确,这个温度就是设计温度,这个压力就是设计压力。一旦工作条件偏离了设计值也会带来误差,所以必须考虑温度、压力补偿,但不考虑密度补偿。(3)测量介质为气体,且以质量流量表示。  对漩涡流量计,由漩涡频率→疏速→工作状态体积流量→设计状态体积流量→标准状态体积流量,再乘以标准状态下气体的密度而得到质量流量。  显然,以质量流量表示的漩涡流量计,必须进行气体组成变化带来的密度变化的修正,同时工况变化,又增加一个由工作状态折算到设计状态的折算系数。这个折算系数是动态的,也就是温度、压力补偿问题。经过以上分析得出以下结论:(1)无论测气体或液体,若涡街流量计流量以工作状态体积流量表示时,没有密度及温度、压力补偿问题。(2)无论测气体、蒸汽或液体流量,以质量流量表示时,液体一般温度变化范围大,流体密度变化均需进行密度修正,对气体过热蒸汽还需进行温度、压力补偿。(3)以标准体积流量表示时,流量计必须进行温度、压力补偿,无需进行气体密度补偿。电磁流量计是灌浆过程的主要工艺流程,为在施工中进行有效的控制,需对施工过程中的水和水泥浆液进行计量和控制。  钻孔、洗孔:灌浆施工首先要在岩层中自上而下分段进.行钻孔,待单孔终孔,用大量清水洗孔,至回水变清,无流量测量点,故不展开讨论。  简易压水试验:洗孔结束,下孔口管,密封孔口,以设计要求的压力向孔内送水,测定其相应的流量值,并据此计算岩体的透水率。计算结果关系到岩体渗透特性的评价以及灌浆成果资料整理。这一-测量点是十分重要和敏感的,准确是首要指标,水有一-定的电导率,满足电磁流量计的测量要求,需要重点考虑的是电磁流量计的口径,因为压水试验和灌浆用的是相同的电磁流量计. 灌浆:压水试验后,灌浆泵将一定水灰比(比如3:1,2:1,1:1,0.81,0.5:1)的水泥浆液压送到孔中,--部分进入裂隙而扩散,余下的浆液经回浆管返出孔外,流回到浆液搅拌机中,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min;或不大于1L/min,继续灌注60min,灌浆可以结束。每台钻孔设备都需要两台电磁流量计分别记录进、返浆流量,灌浆量就等于进浆量减去返浆量,现场管线与电磁流量计安装布置见图3。  由于现场灌浆泵泵量多为6m³/h(100L/min),故电磁流量计的量程选为100L/min,由电磁流量计的测量原理可知[4],其流速的下限由.同噪声或偏移的信噪比S/N(信号与噪声)来决定,上限则由测量管内衬里的磨损和配管的经济速度等来决定印。由于水泥浆液中带有水泥固体颗粒,考虑到对电磁流量计衬里和电极的磨损,选用流速≤5m/s,另一方面水泥浆液又具有易粘附、沉淀、结垢的特性,故电磁流量计测量管内的流速应不低于0.5m/s,以起到对电极和内衬的自清扫作用。一般当测量管内实际流速<0.1m/s时,感应电动势已变得十分微弱(零点几μV~几μV),此时噪声.的影响逐步变为主导,甚至淹没信号电动势4],由流速与相对误差的关系图(图4)可知,为了保证仪表的检测精度,流速应大于0.5m/s.故推荐使用流速范围为0.5~5m/s.  灌浆施工时吸浆量大小一般在0~100L/min,进、返浆,上电磁流量计相应的流量范围为30~100L/min,从流量、流速与口径三者关系表(表1)可知:电磁流量计口径选择DN25比较合适。DN25的测量范围是14.72~147.18L/min,同时DN25和现场灌浆管道口径一致,配套安装时,不需要变径。同时电磁流量计的时间常数也应该设置小一些,一般在1~3s,以提高测量的灵敏度。  封孔:待灌浆结束后,按照施工技术要求压浆封孔,无流量测量点,故不展开讨论。作为一种用于测量流量的仪表,涡街流量计与流量积算仪表放在一起用就能对液体流量和总量进行测量,并且还能用于很多其他的行业,给其他领域也带来了一定的好处。    现如今,涡街流量计已被广泛应用到工业生产中,作用也越来越重要,如果在涡街流量计使用过程中反映出测量数据不准确,首先要做的就是判断是那个方面的不正确导致了流量的误差,下面,苏川仪表和大家一起探讨关于涡街流量计测量误差的原因分析:1、温度对测量的影响:温度对一般的流量计测量介质都会有影响,温度高低影响了介质的密度,粘度等等,这些都会让测量结果不准确,出现误差。   消除此影响一般是对K系数进行修正,目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。2、选型方面的问题:实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小。    涡街流量计实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大,工艺条件的变动只是临时的,可结合参数的重新整定以提高指示准确度。3、参数整定方向的原因:产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数。而资料上参数的不一致性又影响了参数的确定,通过重新标定结合相互比较确定了参数,解决了此类问题。   涡街流量计作为一种高精度的仪器,不仅仅是在制造和使用的过程中需要严格遵守其要求,在后期的保养中也必须特别注意才能不使流量计提前退休。1)电磁流量计:电磁流量计工作原理基于电磁感应定律。当具有一定导电率的液体在磁场中移动时,产生电动势。国内外使用这类流量计较多,它具有准确度高量程较大、无水头损失、直管段要求短等优点。但造价随着管径增大而成倍增加。2)插入式涡轮流量计:插入式涡轮流量计是将旋转叶轮的涡轮头与不锈钢杆连接插入管中的装置。当流体流动冲击涡轮叶片转动时,用测量涡轮的转速来反映流体流量。它只能测知管内某点的流速靠仪表系数来推算平均流速。分切向式涡轮头和轴向式涡轮头两种,安装或维护时可以不断水;造价相对较低。3)超声波流量计:超声波流量计近年来在国内外给水行业大口径水管上用得较多。它具有准确度高量程大、无水头损失、安装方便等优点:其造价不因管径增大而增加,适用于较大管径场合。此类仪表从原理到结构都很复杂,故障排除较困难。4)涡街流量计:涡街流量计是利用管内水流遇障碍物(挡体)产生震荡运动的规律制成的震荡现象称卡门涡街。由于没有可动部件和感压孔,所以不宜受水中杂质影响,也不宜磨损或发生障碍,但管中流速不宜太低。5)均速管、文丘利流量计:均速管是一种多孔采集断面流速即能测知平均流速的装置其优点是便于安装水头损失小造价较低;缺点是流速低时,压差较小,准确度低。文丘利流量计是-种比较可靠稳定性好的流量计,但造价较高。德国VSERS100流量计联系1.正确选择外夹式超声流量计测量点和进行准确的管道参数测量发射器安装位置的选择遵循以下原则:选择充满流体的管段,如流体上流的垂直管段或完全水平的管段;测量点位置应远离弯管段、通、节流阀、阻尼孔、缩径管段或其它会引起紊流的管段,至少有10D管径的上游直管段和5D的下游直管段。对在泵、控制阀或套管弯曲段后的测量点,为保证更佳精度,其上游直管段长度会要求长达30D任何地方的测量点,一般只需5D的下游直管段。在水平管段上,发射器一般安装在管侧面的正側线上(以避免管道底部沉淀物或管道部的气泡、气穴引起信号丢失)。注意保证管表温度不超出发射器的额定工作温度。zui好选择内部没有腐蚀或锈斑的管段,减少测量的困难和不准确性。如不能完全按以上选点要求进行,仍有可能获得流量测量信号,但信号较弱,精度会降低。(注:D为被检流量计标称口径。)2.超声波探头的安装  选择合适的发射器安装测量点后,对超声流量计进行设置,根据管径的大小,选择合适的安装方法。当被检流量计标称口径≤200m时采用V法测量,标称口径>200m时采用Z法安装。将发射器安装选定的位置清洁干浄并去掉上面的锈斑剥皮和油漆,注意在水平测量管道发射器须安装在3点和9点位置。因为管道内上部位置往往聚有气泡或气穴,低部又集有沉淀物,从而引起信号丢失。将耦合剂沿纵长方向涂在每个发射器发射面的中央位置上。注意安装发射器时要将耦合剂进行挤压保证发射器和管表之间无气泡存在。用不锈钢带或尼龙带将发射器紧固在管表测量位置注意让发射器中线与管侧接触中线保持水平。超声流量计测量探头安装时,应根据管道水流方向以及两个探头上的流向标志正确安放上游发射器和下游发射器。3.其他干扰的排除  在周期性比对测试中,每次测量点应固定的永久性测量点。在比对测试完成后,在超声波探头的四周管壁涂刷防腐漆,取下超声波探头后在安装位置抹上黄油,并贴上一块塑料布,用以保护测量点。下次测量时,取下塑料布,擦掉黄油,用手锤击打测量点,将管道内壁新近结垢震掉,按防腐漆所留下的标记装上换能器即可测量,方便准确。若声波信号接受很弱或时有时无,则可能是管道内壁结垢太厚,或者是管内含有大量气体,使声波经常被阻断所致。可先用手锤击打测量点,如果接受的信号强度不断上升,说明是管壁结垢引起。如击打无效,则多为管内含有大量气体所致,排除气体即可。此外。还可以改变便携式超声波流量计探头安装位置或方式,探测现场管段流动状况。例如,沿着管圆周移动两换能器,核对所测不同位置的线平均流速,zui大流速处可能就是zui接近实际的平均流速位置,因为在最不对称位置的流速畸变所形成的平均流速读数最小。比较探头按Z法和V法安裝所测得的流速,如两者相差很大,表明存在严重横向流动,也就是有旋转流的迹象,应引起注意,采取措施。总之,用便携式超声波流量计对在线电磁流量计进行比对测试,只要准确操作,尽量减少随机误差和附加误差,基本上可以对外夹式超声流量计现场测量的稳定性和重复性作一个大致的定性评估。对于确实测量不稳定、精确度和稳定性偏差较大的长期现场应用的电磁流量计可以及时检测出来,从而采取更精确和更有针对性的方法和措施,满足现场计量和测试的需要。  电磁流量计供电电压问题是最主要的问题,也是此次仪表更换的最大困难。电磁流量计A是DC24V供电回路,两线制;电磁流量计B是AC220V供电,四线制。将B表安装在现场就意味现场要接一条AC220V的供电线,电缆设计之初肯定留有一定的余量(参照SH30822019石油化工仪表供电设计规范余量要求)。但是AC220V供电设备在现场并不是很多,想找到一根备用的AC220V电源线或许不是那么容易。   经现场核实电磁流量计A的安装位置附近并没有AC220V供电设备,距离太远的设备如果现场重新配管施工AC220V电缆线路,因涉及动火作业或者挖掘作业,在投用装置里面有很大的风险,而且工期太久。所以AC220V电源通过备用电缆的想法走不通。进一步现场核查发现,电磁流量计A非直拉电缆,中间有接线箱,接线箱内有多部仪表通过一根16P本安电缆接至中控室,该16P本安电缆有6P备用线,其余10P电缆所接仪表为电磁流量计A和3台液位开关、6台阀位回讯。现考虑通过这根16P的电缆中的1P走AC220V电源。接线箱到仪表端重新敷设一根临时电源线约15m,16P电缆到现场机柜间,将AC220V的1P备用线从端子柜通过一对端子排重新引出,加接电源线接至电源柜。该方案可行性分析如下: 1)16P本安电缆中液位开关信号、阀位回讯信号都是通断的开关信号,抗干扰能力强。电磁流量计B最大功率为75W,电流不大,且AC220V的电压波形好,比较稳定,对DC24V负载造成串扰的影响考虑可以接受。 2)AC220V电源信号走原本安电缆路径.是不符合规范的。综合客观实际要求,只能最大限度地满足规范又要考虑现实情况。根据HG-T20512-2014仪表配管配线设计规范中7.1.3(见表3)和7.1.5(见表4)要求,可以知道仪表信号电缆与电力电缆平行敷设最小间距都是50mm。此处是该次故障处理没办法克服只能容缺的地方。 3)机柜间电缆布线,因是在投用盘柜施工,同一柜子仪表在线的同时进行布线接线,施工安全尤为重要。考虑采取充足准备,提前加工,尽量减少盘柜内动作,由有经验的接线员接线,禁止携带对讲机进入机柜间等措施。确保机柜间电缆布线接线安全。 综合分析,该方案的可行性可以接受。德国VSERS100流量计联系1、精确度  一般说来,选用涡轮流量计主要是看中其高精确度。目前涡轮流量计的精确度大致为液体:国际市场为±0.15%R,±0.2%R,±0.5%R和±1%R,国内定型产品为±0.5%R和±1%R;气体:国际市场为±0.5%R和±1%R,国内为±1%R和±1.5%R,以上精确度指范围度为6:1或10:1。精确度除与本身产品质量有关外,还与使用条件密切相关。  若缩小范围度可提高精确度;特别是作为标准表法流量标准装置的标准流量计,若定点使用,精确度可大为提高。  流量计精确度愈高,对现场使用条件的变化就越敏感,要想保持其高精度,需要对仪表系数特别的处理。一种处理方法就是所谓仪表系数浮动处理法。即由现场以下条件实时进行处理:a)粘度受温度的影响;b)密度受压力、温度的影响;c)传感器信号冗余(一台传感器输出二个信号,监视其比值;d)系数的长期稳定性(采取控制图确定)等。  对于贸易储运交接计量,常配备在线校验装置,以便定期进行校验。  生产厂使用说明书列举的仪表精确度为基本误差,现场应估算附加误差,现场误差应为两者的合成。2、流量范围的选择  涡轮流量计的流量范围的选择对其精确度及使用期限有较大的影响。一般在工作时最大流量相应的转速不宜过高。使用状况分连续工作和间歇工作两种,连续工作是指每天工作时间超过8小时,间歇工作是每天工作时间少于8小时。对于连续工作最大流量应选在仪表上限流量的较低处,而间歇工作可选在较高处。一般连续工作是将实际最大流量乘以1.4作为流量范围的上限流量,而间歇工作则乘以1.3。  如果仪表口径与工艺管道通径不一致时,则应以异径管和等径直管改装管道。  对于流速偏低的工艺管道,最小流量成为选择仪表口径首先要考虑的问题,通常以实际最小流量乘以0.8作为流量范围的下限流量,使其留有一定的裕量。若配有分段线性化功能的显示仪,在传感器流量下限值不能满足实际最小流量时,应要求生产厂在实际最小流量及其附近进行流量校验,将测得的仪表系数输入显示仪,这样就能既降低仪表的流量下限值,还能保持测量的精确度。3、精确度等级  对于仪表精确度等级的要求要慎重,应该从经济角度来考虑,例如大口径输油(输气)管线的贸易结算仪表,经济上关系重大,在仪表上多投入是合算的。至于输送量不大或作为过程控制用只需中等精度水平即可,切忌盲目追求高精度。本安型防爆传感器适配安全栅型号及制造厂,核查防爆等级及批准文号等。若要显示质量流量(或标准状态下体积流量)要选配压力、温度传感器或密度仪表。涡轮流量计显示仪现已由以微处理器为基础可与上位计算机进行通信的流量计计算机所包括,该仪表在仪表功能及使用范围等都远超过老式涡轮流量显示仪。目前作为贸易计量的各类型流量计都趋向于配有直读式显示装置。不但有总量计量的显示,还可附加补偿器(一台功能齐全的流量计算机)输出远传信号。4、对流体的要求  对流体的要求为洁净(或基本洁净)、单相或低粘度的,常用流体举例如下:一般流体,包括水、空气、氧气、高压氢气、牛奶、咖啡等;石油化工类:汽油、轻油、喷气燃料、轻柴油、石脑油、乙烯、聚乙烯、苯乙烯、液化气、二氧化碳及天然气;化学溶液类:氨水、甲醇、盐水等;有机液体:酒精、苯、甲苯、二甲苯、丁二烯、四氯化碳、甲基胺、丙烯腈等;无机液:甲醛、酢酸、苛性钠、二硫化碳等。对于腐蚀性介质,使用材质选择要注意,含杂质多及磨蚀性介质不推荐使用。5、对液体粘度的要求  液体涡轮流量计为粘度敏感的流量计,当液体粘度增大时,仪表系数的线性区变窄,下限流量增大,当粘度增加到一定数值时,甚至无线性区域。螺旋叶片的情况比直叶片要好的多。  对于液体,通常用水校验传感器,当精度为0.5级时,可在5×10-6mm2/s以下的液体而不必考虑粘度的影响。当流体粘度高于5×10-6mm2/s时,可用相当粘度的液体校验而不必作粘度修正。此外也可采取一些措施来补偿粘度的影响。如缩小使用范围度,提高流量下线值或仪表系数乘以雷诺数修正系数等。  粘度对仪表系数的影响与传感器结构类型及参数口径大小等有关。有几种粘度对仪表系数影响的表示方法:仪表系数与雷诺数的关系,在几种粘度下,仪表系数与输出频率的关系和仪表系数与输出频率除以运动年度的比值的关系等等。这些资料有的生产厂准备有,但并非所有的生产厂都有这些资料。6、对气体密度的要求  气体涡轮流量计主要考虑流体密度对仪表系数的影响,密度的影响主要在低流量区域,如图14所示。密度的增大(即压力增大)使特性曲线直线部分向下限流量区域拓展,传感器的范围度扩大,线性度改善。若气体涡轮流量计在常压的空气中校验使用时被测介质工作压力不一样,其下限流量由下式计算qvmin,qvamin-分别为压力p和压力pa(101.325kPa)下被测介质和空气的体积流量下限值,m3/h;p,pa-分别为工作压力(绝压)和大气压(101.325kPa),kPa;d-被测介质的相对密度,无量纲。7、体积流量换算到质量流量  涡轮流量计测量的是实际体积流量,无论物料平衡或能源计量,介须测量介质流量(即标准状态下的体积流量),这是应由下式进行换算 式中 qv,qvn-分别为工作状态和标准状态下的体积流量,m3/h;p,T,Z-分别为工作状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;pn,Tn,Zn-分别为标准状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;8、不宜选用涡轮流量计的场所含杂质多的流体,如循环冷却水、河水、排污水、燃油等;流量急剧变化的场所,如锅炉供水系统、有空气锤的供气系统等;测量液体时,管道压力不高而流量又较大,仪表下游侧压力可能接近饱和蒸汽压,有产生气穴的危险,如液氨从高位槽靠位能自由流出,在排放口处就不宜安装;电焊机、电动机、有触点的继电器等的附近,存在严重电磁干扰的场所;上下游直管段长度严重不足,如轮船的机舱内;锅炉自动供水系统如频繁地起泵和停泵,对叶轮造成冲击,使传感器很快损坏;有腐蚀性或磨蚀性介质选型时应慎重,宜与制造厂联系咨询。9、经济性  选用涡轮流量计用于高精确度场合,其经济因素应多方面考虑。仪表的购置费只是费用的一部分,还应考虑以下几方面的开支:安装用辅助设备费(如消气器、过滤器等)或旁路支管包括阀门等;校验费,为了保持高精度必须经常校验,甚至在现场安装一套在线校验装置,其费用相当可观;维护费,涡轮流量计的易损件更换用,他是保持高性能必需的。电磁流量计是一种测量导电介质体积流量的感应仪表,在进行现场监测显示的同时,可输出标准的电流信号,供记录、调节、控制使用,实现检测自动控制,并可实现信号的远距离传送。    智能电磁流量计具有精度高、灵敏度高、稳定性好等优点,在供水企业中有着广泛的应用前景,特别是在大口径、安装环境好的工厂、居民区等场所,虽然智能电磁流量计的使用已经非常成熟。但是,仍有一些问题需要注意。一、信号传输问题:    电磁流量计在区域管网中运行时,可以为城市供水调度提供一定的决策信息。因此,用户对电磁流量信号的实时性和连续性提出了更高的要求。如果智能电磁流量计能完成仪器本身信号的自动转换和无线传输,减少数据采集的兼容或相互转换等困扰,那将为企业的使用提供便利,也将为仪表的推广应用增加更大的优势。二、电源问题:    目前智能电磁流量计不自带电源,造成了室外安装不方便,一旦断电,将造成用作结算水表的流量计数据缺失,这样对其断电时段缺失水量的计量与推算也就提出了新的问题。若电磁流量计能自带电源,就能从根本上解决这一问题,也将促进其在结算水表中的推广应用。三、防雷问题:    电磁流量计在雷雨天气覆盖较广的地区防雷是个重要的工作。在严格做好接地、电源保护后,在空旷地区安装的电磁流量计被雷击的概率还是很高。所以简单有效的办法是提高流量计自身的防雷性能,如不能根本性解决,则应对其内部电路进行分离保护,这样即使雷击损坏,也能降低更换成本。

您如果需要德国VSERS100流量计联系的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网